Cell Broadband Engine Processor: Motivation, Architecture, Programming

H. Peter Hofstee, Ph. D.
Cell Chief Scientist and Chief Architect, Cell Synergistic Processor
IBM Systems and Technology Group
SCEI/Sony Toshiba IBM Design Center
Austin, Texas
Acknowledgements

- Cell Broadband Engine ("Cell") is the result of a deep partnership between SCEI/Sony, Toshiba, and IBM

- Cell represents the work of more than 400 people starting in 2001 and a design investment of about $400M
Agenda

- Motivation
- Architecture
- Implementation
- Programming
- Applications
Motivation
Motivation: Cell Goals

- **Outstanding performance, especially on game/multimedia applications.**
 - Challenges: Power Wall, Frequency Wall, Memory Wall

- **Real time responsiveness to the user and the network.**
 - Challenges: Real-time in an SMP environment, Security

- **Applicable to a wide range of platforms.**
 - Challenge: Maintain programmability while increasing performance

- **Support an introduction in 2005/6.**
 - Challenge: Structure innovation such that 5yr. schedule can be met
Power Wall: Module Heat Flux Trend

Year of Announcement

Module Heat Flux (watts/cm²)
0 2 4 6 8 10 12 14

Bipolar
CMOS

Start of Water Cooling
Vacuum
IBM 360
IBM 370
IBM 3090S
NTT
Fujitsu VP2000
IBM 3090
Fujitsu M-780
IBM ES9000
Fujitsu M380
CDC Cyber 205
IBM 4381
IBM 3081
IBM RY5
IBM RY7
Pentium 4
IBM RY6
IBM RY4
Pulsar
Apache
Merced
Pentium II(DSIP)

R. Schmidt, IBM
CMOS Devices hitting a scaling wall

- **Power components:**
 - Active power
 - Passive power
 - Gate leakage
 - Sub-threshold leakage (source-drain leakage)
- **Net:**
 - Further improvements require structure/materials changes (next slide)
Better Performance Without Scaling

New materials & structures are critical for continuing CMOS technology density and performance path, while mitigating power dissipation.
Computing Paradigm Shift

Today:
- Single thread performance hitting limits
 - Architecture and process technology saturated
 - Small percentage gains expected to remain

But:
- Signs of paradigm shift to application specific system customization
 - Large multiple gains for specific applications
 - Cell
 - 50x on TRE, 120x on FFT
 - Datapower
 - XML acceleration
 - Many examples in embedded markets

Future:
- Greater performance demands
 - Immersive Interaction
 - 3D, real-time, gaming inspired applications
 - Rich media, data-intensive content
 - Sensory Computing
 - New network tier
 - Autonomous agents performing intelligent analysis on streaming data
 - A&D: battlefield coordination
Solutions

- **Memory wall:**
 - More slower threads
 - Asynchronous loads

- **Efficiency wall:**
 - More slower threads
 - Specialized function

- **Power wall:**
 - Reduce transistor power
 - operating voltage
 - limit oxide thickness scaling
 - limit channel length
 - Reduce switching per function

INCREASE CONCURRENCY

INCREASE SPECIALIZATION
Architecture & Implementation
Cell Concept

- **Compatibility with 64b Power Architecture™**
 - Builds on and leverages IBM investment and community

- **Increased efficiency and performance**
 - Non Homogenous Coherent Chip Multiprocessor
 - Allows an attack on the “Frequency Wall”
 - Streaming DMA architecture attacks “Memory Wall”
 - High design frequency, low operating voltage attacks “Power Wall”
 - Highly optimized implementation

- **Interface between user and networked world**
 - Flexibility and security
 - Multi-OS support, including RTOS/non-RTOS
 - Architectural extensions for real-time management
Cell Architecture is …

64b Power Architecture™

Incl. coherence/memory compatible with 32/64b Power Arch. Applications and OS’s
Cell Architecture is … 64b Power Architecture™
Cell Architecture is … 64b Power Architecture™+ MFC

Plus

Synergistic

Processors

Memory

LS Alias

LS Alias

Power ISA

MMU/BIU

Power ISA

MMU/BIU

COHERENT BUS (+RAG)

IO transl.

Syn. Proc. ISA

MMU/DMA

Local Store Memory

Syn. Proc. ISA

MMU/DMA

Local Store Memory
Coherent Offload Model

- DMA into and out of Local Store equivalent to Power core loads & stores
- Governed by Power Architecture page and segment tables for translation and protection
- Shared memory model
 - Power architecture compatible addressing
 - MMIO capabilities for SPEs
 - Local Store is mapped (alias) allowing LS to LS DMA transfers
 - DMA equivalents of locking loads & stores
 - OS management/virtualization of SPEs
 - Pre-emptive context switch is supported (but not efficient)
SPE Highlights

- **RISC like organization**
 - 32 bit fixed instructions
 - Clean design – unified Register file

- **User-mode architecture**
 - No translation/protection within SPU
 - DMA is full Power Arch protect/x-late

- **VMX-like SIMD dataflow**
 - Broad set of operations (8 / 16 / 32 Byte)
 - Graphics SP-Float
 - IEEE DP-Float

- **Unified register file**
 - 128 entry x 128 bit

- **256KB Local Store**
 - Combined I & D

14.5mm² (90nm SOI)
SPE PIPELINE FRONT END

SPE PIPELINE BACK END

Branch Instruction
Permute Instruction
Load/Store Instruction
Fixed Point Instruction
Floating Point Instruction

IF Instruction Fetch
IB Instruction Buffer
ID Instruction Decode
IS Instruction Issue
RF Register File Access
EX Execution
WB Write Back
CELL PROCESSOR STATISTICS

- 250M transistors ... 235mm²
- Top frequency >4GHz
 - Lab conditions
 - Most efficient at ~1V
- > 200 GFlops (SP) @3.2GHz
- > 20 GFlops (DP) @3.2GHz
- Up to 25.6 GB/s memory B/W
- Up to 70+ GB/s I/O B/W
 - Practical ~ 50GB/s
- 100+ simultaneous bus transactions
 - 16+8 entry DMA queue per SPE

First pass hardware measurement in the Lab - Nominal Voltage = 1V
Programming
Cell Prototype Software Environment
www.ibm.com/developerworks/power/cell

Development Environment

- Code Dev Tools
 - Samples
 - Workloads
 - Demos

- Debug Tools
 - SPE Management Lib
 - Application Libs

- Performance Tools
 - Linux PPC64 with Cell Extensions

- Miscellaneous Tools
 - Verification Hypervisor
 - Hardware or System Level Simulator

Standards:
- Language extensions
- ABI

Execution Environment
Operating System Runtime Strategy

- **Heterogeneous Multi-Threaded Model**
 - PPE Threads, SPE Threads
 - SPE DMA EA = PPE Process EA Space
 - Or SPE Private EA space
 - OS supports Create/Destroy SPE tasks
 - Atomic Update Primitives used for Mutex
 - SPE Context Fully Managed
 - Context Save/Restore for Debug
 - Virtualization Mode (indirect access)
 - Direct Access Mode (realtime)
 - OS assignment of SPE threads to SPEs
 - Programmer directed using affinity mask
 - SPE Compilers use OS runtime services

![Diagram](image-url)

- Application Source & Libraries
 - PPE object files
 - SPE object files

- Cell AwareOS (Linux)
 - SPE Virtualization / Scheduling Layer (m->n SPE threads)
 - Existing PPE tasks/threads
 - New SPE tasks/threads
Programming Models

1) Application Specific Accelerators

Acceleration provided by O/S services
Application independent of accelerators platform fixed
Programming Models

2) Function Offload

- SPE function provided by libraries
- Predetermined functions
- Application calls standard Libraries
 - Single source compilation
 - SPE working set fits in Local Store
 - O/S handles SPE allocation
Programming Models

3) Computational Acceleration

- User created RPC libraries
 - User acceleration routines
 - User compiles SPE code

- Local Data
 - Data and Parameters passed in call

- Global Data
 - Data and Parameters passed in call
 - SPE Code manages global data
Single source approach to programming Cell

- **Single Source Compiler**
 - Auto parallelization (treat target Cell as an SMP)
 - Auto SIMD-ization (SIMD-vectorization)
 - Compiler management of Local Store as 2nd level register file/SW managed cache (I&D)
 - Most Cell unique piece

- **Optimization**
 - OpenMP pragmas
 - Vector.org SIMD intrinsics
 - Data/Code partitioning
 - Streaming / pre-specifying code/data use

- **Prototype Single Source Compiler Developed in IBM Research**
Applications
Cell BE Performance Characteristics

VERY GOOD

- Computationally intensive code (loops can be unrolled)
 - Order of magnitude more flops
- Scatter-gather type problems
 (e.g. FFT, Raycasting, sparse matrices)
 - Almost two orders of magnitude more performance than a typical PC processor

NOT OPTIMIZED FOR

- Rapid context switch
 - LS is context, switch is about 30uSec
 - Run to completion is preferred
 - Cooperative switching works well
 - Pre-emptive switch is possible
- Load-compare-add-branch (TPCC, gcc type codes)
 - 6 cycle load hurts
 - Still 8 (10) threads on a single chip
Terrain Rendering Engine
Planned Usage of Cell

- **Sony**
 - **Playstation 3**
 - 10 – 20 million units / year
 - Current Sony installed base 190 million units (PS1 & PS2)
 - **Cell Development Center reporting directly to CEO**

- **Toshiba**
 - **Cell on PC-type form factor card (October 2005)**
 - White box form factor
 - Reference system for Cell

- **IBM**
 - Engineering and Technology Services
 - Custom designs and application utilizing cell
 - Mercury Computer
 - Cell based systems
User Interaction Drives Innovation in Computing

Time

Punch Cards
Green Screen/ Teletype
Main Frame Batch
Main Frame Multitasking
Mini-Computer WYSIWYG
Word Processing
Spreadsheet
Stand Alone PC Windows
WWW
Internet
Client/Server
Gaming
Immersion Interaction
Online Gaming

Source: J.A. Kahle
Characteristics of the Latest Transition in User Interaction

- Windows
- Click and wait…
- Client-centric
- User data accessible from client only
- Device-centric
- Connected
- Wired, sporadic
- E-mail/newsgroups

- Immersive, 3D interactivity
- Real-time
- Distributed
- User data accessible everywhere
- Device-agnostic
- Collaborative
- Wireless, always-on
- Text messaging/blogs
Summary & Conclusions
Summary

- Cell ushers in a new era of leading edge processors optimized for digital media and entertainment.
- Desire for realism is driving a convergence between supercomputing and entertainment.
- New levels of performance and power efficiency beyond what is achieved by PC processors.
- Responsiveness to the human user and the network are key drivers for Cell.
- Cell will enable entirely new classes of applications, even beyond those we contemplate today.
- TIME TO GET IN THE GAME!