
Control system design methodology for SoC FPGA

devices

Gabriel Santana Quintana

Institute for Applied

Microelectronics (IUMA)

University of Las Palmas de Gran

Canaria

Las Palmas de Gran Canaria, España

gsquintana@iuma.ulpgc.es

Pedro Pérez Carballo

Institute for Applied

Microelectronics (IUMA)

University of Las Palmas de Gran

Canaria

Las Palmas de Gran Canaria, España

carballo@iuma.ulpgc.es

Carlos Betancor Martín

Institute for Applied

Microelectronics (IUMA)

University of Las Palmas de Gran

Canaria

Las Palmas de Gran Canaria, España

betancor@iuma.ulpgc.es

Abstract— This paper proposes a methodology to design

control system for SoC FPGA devices. The design flow is done

with the MATLAB/Simulink and Vivado Design Suite tools. An

implementation of a Dynamic Photovoltaic Array

Reconfiguration (DPVAR) algorithm, together with a Maximum

Power Point Tracker (MPPT) controller can validate the

proposed design methodology. The controller will maximise the

power output of a PV array under partial shading conditions.

The designed control system is prototyped on the ZedBoard

development board.

Index Terms - SoC FPGA; FPGA; MPPT; DPVAR; Design

Methodology

I. INTRODUCTION

The use of both FPGAs and SoC FPGAs in control
applications is of great interest, as it is a flexible technology
that allows the implementation of control algorithms for
different industrial processes. Among the most prominent
fields of application are robotics ([1], [2]), embedded
controllers for industrial applications ([3], [4]), and controllers
for power electronics and power generation ([5], [6]).

The use of FPGAs in robotics is increasing as robotic
systems usually integrate a large variety and number of
sensors, generating a large amount of data to be processed in
real time. Within the field of embedded controllers, the most
interesting applications are related to the automotive and
aerospace industries. The controllers developed for these
applications must follow real-time specifications, and therefore
often require a high computational capacity.

The use of FPGAs in power electronics systems is also of
special interest when a high degree of parallelism is required
for the application.

II. DESIGN METHODOLOGY

The proposed design methodology is presented in Figure 1.

It is based on three key verification techniques: Model-in-the-

Loop (MIL), Software-in-the-Loop (SIL) and SoC-in-the-

Loop (SCIL). SoC-in-the-Loop is a combination of Processor-

in-the-Loop with FPGA-in-the-Loop to complete the

verification of the system with a hardware/software codesign

approach.

End

Modelling of the plant to
be controlled in Simulink

Model-in-the-Loop
Simulation

Software-in-the-Loop
Simulation

Simulation
OK?

Yes

No

Simulation
OK?

Yes

No

Algorithm in
MATLAB/Simulink

IP blocks generation

IP block verification via
SoC-in-the-Loop

Simulation
OK?

No

Yes

Final system
implementation

SoC-in-the-Loop
Simulation

Simulation
OK?

No

Yes

Figure 1. Design Methodology.

III. IMPLEMENTATION CASE

The implementation case chosen to verify the functionality
of the design methodology is a Dynamic Photovoltaic Array
Reconfiguration (DPVAR) algorithm together with a
Maximum Power Point Tracker (MPPT) controller to improve
the power output of a photovoltaic installation affected by
partial shading. The DPVAR algorithm to be implemented in a
SoC FPGA device is the MMTES as described in [7]. As for
the MPPT controller, the incremental conductance [8] variant
is chosen to be implemented.

A. MMTES Algorithm

Significative parts of this algorithm have been identified as

suitable to be implemented on hardware and take advantage of

its parallel computing capacity.

mailto:gsquintana@iuma.ulpgc.es
mailto:carballo@iuma.ulpgc.es
mailto:betancor@iuma.ulpgc.es

The MMTES algorithm can be applied to any size of PV

array, with symmetrical or asymmetrical configurations. To be

able to modify the connection of the PV panels, a switch

matrix is required.

To implement this algorithm in MATLAB, it is divided

into three main functions: MMTESSort, PairForSwapping

and SwapPair. The performance of the MATLAB

implementation is analysed to choose a suitable

hardware/software partition for an implementation on SoC

FPGA technology.

The measured execution time of the implementation of the

MMTES algorithm in MATLAB for the four cases proposed

in the MMTES algorithm paper, are shown in the Table 1.

Table 1. Execution time of the MMTES algorithm in MATLAB.

Case
Execution Time (milliseconds)

MMTES MMTESSort PairForSwapping SwapPair

1 26 7 6 1

2 37 6 5 4

3 33 11 7 5

4 36 9 5 1

From this data, it is decided to make a hardware

implementation for the MMTESSort and PairForSwapping

functions and a software implementation for the SwapPair

function and the rest of the MMTES algorithm. For the

hardware implementation of the MMTESSort function, it has

been implemented a Bitonic Sort algorithm, which is a

hardware-oriented sorting algorithm, and for the hardware

implementation of the PairForSwapping function, the

original function has been modified to a parallelized version.

B. MPPT Controller

The incremental conductance method is based on

comparing the incremental conductance dI/dV with the

instantaneous conductance I/V and changing the output duty

cycle according to the result obtained. The implementation of

the incremental conductance MPPT controller is done in

MATLAB based on the flowchart illustrated in Figure 2.

IV. SYSTEM MODELLING

The system is modelled in Simulink. The complete system
consists of a total of eight modules. It is divided into two main
subsystems: the hardware subsystem model and SoC FPGA
subsystem, to implement the algorithm (Figure 3). The
hardware part includes the PV array affected by partial
shading, the switch matrix that allows altering the connection
of the PV array, a Buck Converter that allows the MPPT
controller to adjust the operating point of the PV system and a
DC load. The MMTES algorithm, the incremental conductance
MPPT controller, the auxCtrl function and the PWM generator
are implemented in the SoC FPGA.

A. MIL/SIL Simulation

Two different loads have been used for simulations,
including resistive and inductive ones, with different values.
The MIL simulation calculates the operation of the algorithms
implemented in MATLAB/Simulink with the PV system
model.

 Start

Measure V(k), I(k)

Increase IncreaseDecrease Decrease

End

Yes

No

Yes

Yes

NoNo

No
No

Yes

Yes

Figure 2. MPPT controller flowchart.

Photovoltaic
panels

Switch
Matrix

Buck
Converter

MMTES

C
o

n
tr

o
l v

ec
to

r

G

P
MPPT

Controller

PWM
Generator

Vpv

Ipv

PWM

auxCtrl D

SoC-FPGA

DC Load

PV system model

Figure 3. System block diagram.

In the SIL simulation, Simulink generates code from the
implementation of the MMTES algorithm, the MPPT
controller, the auxCtrl function and the PWM generator and
simulates their operation together with the PV system model.

The Table 2 shows the output power values obtained with a
resistive load in the MIL and SIL simulations. There is no
difference in the output power obtained with both simulations.

Table 2. Output power obtained with resistive loads in MIL and SIL

simulations.

Case

Pout (W)

MIL SIL

R1 R2 R3 R1 R2 R3

1 823.5 829.1 828.9 823.5 829.1 828.9

2 789.7 801.1 801.3 789.7 801.1 801.3

4 793.6 794.7 796.8 793.6 794.7 796.8

V. DEVELOPMENT AND VERIFICATION OF IP BLOCKS

Using the HDL Workflow Advisor tool, IP blocks have

been created from Simulink models. These IP blocks are

designed to communicate with the SoC FPGA processor

through an AXI interface. Once the IP blocks are created, a

new model is automatically generated in Simulink called

software interface in which the algorithm, for which the IP

block was generated, is changed to an AXI interface to write

and read data to/from the blocks.

To verify the operation of the created IP block, a bitstream

is loaded to program the FPGA. After this, a simulation is

realized in external mode from Simulink (Figure 4). This

simulation connects the development computer running

MATLAB/Simulink with the prototyping board via Ethernet,

generates an executable from the software interface model and

launches it in the processor of the Zynq device, monitoring its

operation. This allows to observe and verify the results from

the IP block.

VI. IMPLEMENTATION AND VERIFICATION

A project is generated in Vivado Design Suite in which the

generated IP blocks are integrated together with the PS

(Processing System) of the Zynq mounted on the ZedBoard

and other blocks necessary for the interconnection. The

synthesis and implementation of the design is realized,

obtaining the resource consumption illustrated in Table 3.

After this, the bitstream is generated to program the PL

(Programmable Logic) of the Zynq with the designed system.

 The software for the designed system is generated from a

Simulink model called ZedBoardModel. The MPPT controller

and the MMTES algorithm are implemented in this model.

The implemented algorithms are divided into two distinct

parts: the software part and the hardware part. The software

part implements the partitioning of the algorithms that are

executed in the PS of the Zynq, i.e., in the ARM processor.

The hardware part implements the partitioning of the

algorithms that are executed on the PL of the Zynq, i.e., on the

FPGA. In addition to the algorithms mentioned above, the

designed system is equipped with UDP communication over

Ethernet. This is necessary to complete the verification of the

final system.

To verify the designed system, the PS of the ZedBoard is

first programmed with the software generated from the

ZedBoardModel.

After this, its operation is simulated together with

SimscapeModel. This Simulink model contains the model of

the system to be controlled and exchanges data during the

simulation via UDP over Ethernet. This communication

channel allows the voltage and current values of the PV array,

the irradiance matrix and the position matrix to be sent to the

ZedBoard during the SimscapeModel simulation. In the

ZedBoard this data is used as input values for the MPPT

controller and the MMTES algorithm. The duty cycle

calculated by the MPPT, and the control vector calculated by

the MMTES algorithm are transmitted from the ZedBoard

back to SimscapeModel. In this way, by simulating

SimscapeModel, the implemented system on the ZedBoard is

verified.

Figure 4. External mode simulation [9].

Table 3. Resource utilization.

 LUT FF DSP

BitonicSort 2975 (5.59 %) 606 (0.57 %) 0

MPPT_Inc 1743 (3.31 %) 244 (0.25 %) 6 (2.73 %)

PairForSwappingPll 733 (1.38 %) 496 (0.47 %) 0

Figure 5 shows the result of performing the

SimscapeModel simulation together with the system

implemented on the ZedBoard. This simulation corresponds to

case study 1 with R2 load. Figure 5 is divided into two distinct

graphs. The upper graph compares the output power obtained

during the SoC in the Loop simulation with that obtained in

the MIL and SIL simulations. The lower graph shows the

value of the difference between the output power of the SoC in

the Loop and MIL/SIL simulations. The output power

obtained with the SoC in the Loop simulation is almost

identical to that obtained in the MIL and SIL simulations. The

difference between the output powers varies between 0 and 10-

4.

During the verification process, measurements are taken of

the runtime of the hardware/software implementation of the

MMTES algorithm on the ZedBoard. To compare the

runtimes, a new model is created in Simulink. This new model

changes the hardware/software implementation of the

MMTES algorithm to a purely software implementation. By

simulating SimscapeModel with this new model loaded on the

ZedBoard, the execution time of the pure software

implementation of the MMTES algorithm running on the

ARM processor of the ZedBoard can be measured. A

comparison of the measured execution times is presented in

Table 4.

Figure 5. Simulation of SimscapeModel in conjunction with ZedBoardModel

for case 1 with load R2.

Table 4. Comparison of execution times for software and hardware/software
implementation.

 Software (µs)
Hardware

Software (µs)
Difference

PairForSwapping 3.59 7.60 + 4.01

Sort 20.95 2.22 + 0.27

Rest of the

functions
29.30 9.49 -19.81

Total 53.84 38.31 - 15.53

The average execution time for hardware/software

implementation is shorter than for pure software

implementation, at around 29%. However, the software

runtime of the PairForSwapping and Sort functions is shorter

than that of the hardware/software implementations of

PairForSwappingPll and BitonicSort. This is due to the Data

Movement, as it takes time to transmit the data to the IP

blocks in the PL of the ZedBoard.

The average execution time of the hardware/software

implementation is shorter than that of the software

implementation, even though the PairForSwappingPll and

BitonicSort functions are slower in the studied cases, due to

the execution times are more stable. The smallest runtime

measured for the software implementation is shorter than the

shorter runtime of the hardware/software implementation. On

the other hand, the longer runtime of the software

implementation is much longer than that of the

hardware/software implementation. The runtime value of the

software implementation varies, in contrast to the

hardware/software implementation where it stays stable.

VII. CONCLUSION

The functionality of the developed implementation has

been verified with a SoC in the Loop simulation with a

development board. In addition to verifying the functionality,

it has been checked that the hardware/software

implementation of the MMTES algorithm shows

improvements in terms of execution time and temporal

stability compared to a purely software implementation. The

average execution time of the MMTES algorithm has been

reduced by 29%.

The functionality of the proposed design methodology is

demonstrated through its implementation. Among the

improvements it offers is the facility to perform the

hardware/software partitioning of a design from a high-level

and, based on this, to automatically generate code for the

embedded software of the software partition and HDL code

for the hardware partition.

Performing the design flow steps included in the presented

co-design methodology from a single tool facilitates and

speeds up the design process. This is a great advantage

especially in cases where a short development time or the

evaluation of different algorithm alternatives is required. In

addition, the possibility offered by this methodology of using

models created in Simulink during the verification process is

an attractive feature, especially in the industrial environment

where it can be complicated and costly to verify an

implementation with the real system.

REFERENCES

[1] Z. Wan et al., “A Survey of FPGA-Based Robotic Computing,”
IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 48–74, 2021, doi:

10.1109/MCAS.2021.3071609.

[2] G. Divya Vani, K. S. Rao, and M. C. Chinnaiah, “Self-Automated

Parking with FPGA-Based Robot,” in Micro and Nanoelectronics

Devices, Circuits and Systems: Select Proceedings of MNDCS 2021,

T. R. Lenka, D. Misra, and A. Biswas, Eds. Singapore: Springer
Singapore, 2022, pp. 459–470 [Online]. Available:

https://doi.org/10.1007/978-981-16-3767-4_45

[3] M. Vyas, “Trends of FPGA use in Automotive Engineering,” in
2018 3rd IEEE International Conference on Recent Trends in

Electronics, Information Communication Technology (RTEICT),

2018, pp. 580–591, doi: 10.1109/RTEICT42901.2018.9012495.
[4] S. Di Cairano and I. V Kolmanovsky, “Real-time optimization and

model predictive control for aerospace and automotive

applications,” in 2018 Annual American Control Conference (ACC),
2018, pp. 2392–2409, doi: 10.23919/ACC.2018.8431585.

[5] Ó. Lopez, J. Alvarez, J. Doval-Gandoy, and F. D. Freijedo,

“Multilevel Multiphase Space Vector PWM Algorithm,” IEEE
Trans. Ind. Electron., vol. 55, no. 5, pp. 1933–1942, May 2008, doi:

10.1109/TIE.2008.918466.

[6] H. Hatas, N. Genc, and A. Mamizadeh, “FPGA Implementation of
SPWM for Cascaded Multilevel Inverter by Using XSG,” in 2019

4th International Conference on Power Electronics and their

Applications (ICPEA), 2019, pp. 1–6, doi:
10.1109/ICPEA1.2019.8911189.

[7] G. H. K. Varma, V. R. Barry, R. K. Jain, and D. Kumar, “An

MMTES algorithm for dynamic photovoltaic array reconfiguration
to enhance power output under partial shading conditions,” IET

Renew. Power Gener., vol. 15, no. 4, pp. 809–820, Mar. 2021, doi:

10.1049/RPG2.12070. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1049/rpg2.12070.

[Accessed: 05-Oct-2021]

[8] H. Deopare and A. Deshpande, “Modeling and simulation of
Incremental conductance Maximum Power Point tracking,” in 2015

International Conference on Energy Systems and Applications,

2015, pp. 501–505, doi: 10.1109/ICESA.2015.7503400.
[9] MathWorks, “Getting Started with Targeting Xilinx Zynq Platform -

MATLAB & Simulink - MathWorks España.” [Online]. Available:
https://es.mathworks.com/help/hdlcoder/ug/getting-started-with-

hardware-software-codesign-workflow-for-xilinx-zynq-

platform.html. [Accessed: 02-Nov-2021]

