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Abstract— This paper proposes a methodology to design 

control system for SoC FPGA devices. The design flow is done 

with the MATLAB/Simulink and Vivado Design Suite tools. An 

implementation of a Dynamic Photovoltaic Array 

Reconfiguration (DPVAR) algorithm, together with a Maximum 

Power Point Tracker (MPPT) controller can validate the 

proposed design methodology. The controller will maximise the 

power output of a PV array under partial shading conditions. 

The designed control system is prototyped on the ZedBoard 

development board. 

Index Terms - SoC FPGA; FPGA; MPPT; DPVAR; Design 

Methodology 

I.  INTRODUCTION  

The use of both FPGAs and SoC FPGAs in control 
applications is of great interest, as it is a flexible technology 
that allows the implementation of control algorithms for 
different industrial processes. Among the most prominent 
fields of application are robotics ([1], [2]), embedded 
controllers for industrial applications ([3], [4]), and controllers 
for power electronics and power generation ([5], [6]).  

The use of FPGAs in robotics is increasing as robotic 
systems usually integrate a large variety and number of 
sensors, generating a large amount of data to be processed in 
real time. Within the field of embedded controllers, the most 
interesting applications are related to the automotive and 
aerospace industries. The controllers developed for these 
applications must follow real-time specifications, and therefore 
often require a high computational capacity. 

The use of FPGAs in power electronics systems is also of 
special interest when a high degree of parallelism is required 
for the application. 

II. DESIGN METHODOLOGY 

The proposed design methodology is presented in Figure 1. 

It is based on three key verification techniques: Model-in-the-

Loop (MIL), Software-in-the-Loop (SIL) and SoC-in-the-

Loop (SCIL). SoC-in-the-Loop is a combination of Processor-

in-the-Loop with FPGA-in-the-Loop to complete the 

verification of the system with a hardware/software codesign 

approach. 
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Figure 1. Design Methodology. 

III. IMPLEMENTATION CASE 

The implementation case chosen to verify the functionality 
of the design methodology is a Dynamic Photovoltaic Array 
Reconfiguration (DPVAR) algorithm together with a 
Maximum Power Point Tracker (MPPT) controller to improve 
the power output of a photovoltaic installation affected by 
partial shading. The DPVAR algorithm to be implemented in a 
SoC FPGA device is the MMTES as described in [7]. As for 
the MPPT controller, the incremental conductance [8] variant 
is chosen to be implemented. 

A. MMTES Algorithm 

Significative parts of this algorithm have been identified as 

suitable to be implemented on hardware and take advantage of 

its parallel computing capacity. 
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The MMTES algorithm can be applied to any size of PV 

array, with symmetrical or asymmetrical configurations. To be 

able to modify the connection of the PV panels, a switch 

matrix is required.  

To implement this algorithm in MATLAB, it is divided 

into three main functions: MMTESSort, PairForSwapping 

and SwapPair. The performance of the MATLAB 

implementation is analysed to choose a suitable 

hardware/software partition for an implementation on SoC 

FPGA technology. 

The measured execution time of the implementation of the 

MMTES algorithm in MATLAB for the four cases proposed 

in the MMTES algorithm paper, are shown in the Table 1. 

Table 1. Execution time of the MMTES algorithm in MATLAB. 

Case 
Execution Time (milliseconds) 

MMTES MMTESSort PairForSwapping SwapPair 

1 26 7 6 1 

2 37 6 5 4 

3 33 11 7 5 

4 36 9 5 1 

 

From this data, it is decided to make a hardware 

implementation for the MMTESSort and PairForSwapping 

functions and a software implementation for the SwapPair 

function and the rest of the MMTES algorithm. For the 

hardware implementation of the MMTESSort function, it has 

been implemented a Bitonic Sort algorithm, which is a 

hardware-oriented sorting algorithm, and for the hardware 

implementation of the PairForSwapping function, the 

original function has been modified to a parallelized version. 

B. MPPT Controller 

The incremental conductance method is based on 

comparing the incremental conductance dI/dV with the 

instantaneous conductance I/V and changing the output duty 

cycle according to the result obtained. The implementation of 

the incremental conductance MPPT controller is done in 

MATLAB based on the flowchart illustrated in Figure 2. 

IV. SYSTEM MODELLING 

The system is modelled in Simulink. The complete system 
consists of a total of eight modules. It is divided into two main 
subsystems: the hardware subsystem model and SoC FPGA 
subsystem, to implement the algorithm (Figure 3). The 
hardware part includes the PV array affected by partial 
shading, the switch matrix that allows altering the connection 
of the PV array, a Buck Converter that allows the MPPT 
controller to adjust the operating point of the PV system and a 
DC load. The MMTES algorithm, the incremental conductance 
MPPT controller, the auxCtrl function and the PWM generator 
are implemented in the SoC FPGA. 

A. MIL/SIL Simulation 

Two different loads have been used for simulations, 
including resistive and inductive ones, with different values. 
The MIL simulation calculates the operation of the algorithms 
implemented in MATLAB/Simulink with the PV system 
model. 
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Figure 2. MPPT controller flowchart. 
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Figure 3. System block diagram. 

In the SIL simulation, Simulink generates code from the 
implementation of the MMTES algorithm, the MPPT 
controller, the auxCtrl function and the PWM generator and 
simulates their operation together with the PV system model.  

The Table 2 shows the output power values obtained with a 
resistive load in the MIL and SIL simulations. There is no 
difference in the output power obtained with both simulations. 

Table 2. Output power obtained with resistive loads in MIL and SIL 

simulations. 

Case 

Pout (W) 

MIL SIL 

R1 R2 R3 R1 R2 R3 

1 823.5 829.1 828.9 823.5 829.1 828.9 

2 789.7 801.1 801.3 789.7 801.1 801.3 

4 793.6 794.7 796.8 793.6 794.7 796.8 

V. DEVELOPMENT AND VERIFICATION OF IP BLOCKS 

Using the HDL Workflow Advisor tool, IP blocks have 

been created from Simulink models. These IP blocks are 

designed to communicate with the SoC FPGA processor 

through an AXI interface. Once the IP blocks are created, a 

new model is automatically generated in Simulink called 

software interface in which the algorithm, for which the IP 



block was generated, is changed to an AXI interface to write 

and read data to/from the blocks.  

To verify the operation of the created IP block, a bitstream 

is loaded to program the FPGA. After this, a simulation is 

realized in external mode from Simulink (Figure 4). This 

simulation connects the development computer running 

MATLAB/Simulink with the prototyping board via Ethernet, 

generates an executable from the software interface model and 

launches it in the processor of the Zynq device, monitoring its 

operation. This allows to observe and verify the results from 

the IP block. 

VI. IMPLEMENTATION AND VERIFICATION 

A project is generated in Vivado Design Suite in which the 

generated IP blocks are integrated together with the PS 

(Processing System) of the Zynq mounted on the ZedBoard 

and other blocks necessary for the interconnection. The 

synthesis and implementation of the design is realized, 

obtaining the resource consumption illustrated in Table 3. 

After this, the bitstream is generated to program the PL 

(Programmable Logic) of the Zynq with the designed system. 

 The software for the designed system is generated from a 

Simulink model called ZedBoardModel. The MPPT controller 

and the MMTES algorithm are implemented in this model. 

The implemented algorithms are divided into two distinct 

parts: the software part and the hardware part. The software 

part implements the partitioning of the algorithms that are 

executed in the PS of the Zynq, i.e., in the ARM processor. 

The hardware part implements the partitioning of the 

algorithms that are executed on the PL of the Zynq, i.e., on the 

FPGA. In addition to the algorithms mentioned above, the 

designed system is equipped with UDP communication over 

Ethernet. This is necessary to complete the verification of the 

final system. 

To verify the designed system, the PS of the ZedBoard is 

first programmed with the software generated from the 

ZedBoardModel. 

After this, its operation is simulated together with 

SimscapeModel. This Simulink model contains the model of 

the system to be controlled and exchanges data during the 

simulation via UDP over Ethernet. This communication 

channel allows the voltage and current values of the PV array, 

the irradiance matrix and the position matrix to be sent to the 

ZedBoard during the SimscapeModel simulation. In the 

ZedBoard this data is used as input values for the MPPT 

controller and the MMTES algorithm. The duty cycle 

calculated by the MPPT, and the control vector calculated by 

the MMTES algorithm are transmitted from the ZedBoard 

back to SimscapeModel. In this way, by simulating 

SimscapeModel, the implemented system on the ZedBoard is 

verified. 

 
Figure 4. External mode simulation [9]. 

Table 3. Resource utilization. 

 LUT FF DSP 

BitonicSort 2975 (5.59 %) 606 (0.57 %) 0 

MPPT_Inc 1743 (3.31 %) 244 (0.25 %) 6 (2.73 %) 

PairForSwappingPll 733 (1.38 %) 496 (0.47 %) 0 

Figure 5 shows the result of performing the 

SimscapeModel simulation together with the system 

implemented on the ZedBoard. This simulation corresponds to 

case study 1 with R2 load. Figure 5 is divided into two distinct 

graphs. The upper graph compares the output power obtained 

during the SoC in the Loop simulation with that obtained in 

the MIL and SIL simulations. The lower graph shows the 

value of the difference between the output power of the SoC in 

the Loop and MIL/SIL simulations. The output power 

obtained with the SoC in the Loop simulation is almost 

identical to that obtained in the MIL and SIL simulations. The 

difference between the output powers varies between 0 and 10-

4.  

During the verification process, measurements are taken of 

the runtime of the hardware/software implementation of the 

MMTES algorithm on the ZedBoard. To compare the 

runtimes, a new model is created in Simulink. This new model 

changes the hardware/software implementation of the 

MMTES algorithm to a purely software implementation. By 

simulating SimscapeModel with this new model loaded on the 

ZedBoard, the execution time of the pure software 

implementation of the MMTES algorithm running on the 

ARM processor of the ZedBoard can be measured. A 

comparison of the measured execution times is presented in 

Table 4. 

 
Figure 5. Simulation of SimscapeModel in conjunction with ZedBoardModel 

for case 1 with load R2. 



Table 4. Comparison of execution times for software and hardware/software 
implementation. 

 Software (µs) 
Hardware 

Software (µs) 
Difference 

PairForSwapping 3.59 7.60 + 4.01 

Sort 20.95 2.22 + 0.27 

Rest of the 

functions 
29.30 9.49 -19.81 

Total 53.84 38.31 - 15.53  

The average execution time for hardware/software 

implementation is shorter than for pure software 

implementation, at around 29%. However, the software 

runtime of the PairForSwapping and Sort functions is shorter 

than that of the hardware/software implementations of 

PairForSwappingPll and BitonicSort. This is due to the Data 

Movement, as it takes time to transmit the data to the IP 

blocks in the PL of the ZedBoard. 

The average execution time of the hardware/software 

implementation is shorter than that of the software 

implementation, even though the PairForSwappingPll and 

BitonicSort functions are slower in the studied cases, due to 

the execution times are more stable. The smallest runtime 

measured for the software implementation is shorter than the 

shorter runtime of the hardware/software implementation. On 

the other hand, the longer runtime of the software 

implementation is much longer than that of the 

hardware/software implementation. The runtime value of the 

software implementation varies, in contrast to the 

hardware/software implementation where it stays stable. 

VII. CONCLUSION 

The functionality of the developed implementation has 

been verified with a SoC in the Loop simulation with a 

development board. In addition to verifying the functionality, 

it has been checked that the hardware/software 

implementation of the MMTES algorithm shows 

improvements in terms of execution time and temporal 

stability compared to a purely software implementation. The 

average execution time of the MMTES algorithm has been 

reduced by 29%. 

The functionality of the proposed design methodology is 

demonstrated through its implementation. Among the 

improvements it offers is the facility to perform the 

hardware/software partitioning of a design from a high-level 

and, based on this, to automatically generate code for the 

embedded software of the software partition and HDL code 

for the hardware partition. 

Performing the design flow steps included in the presented 

co-design methodology from a single tool facilitates and 

speeds up the design process. This is a great advantage 

especially in cases where a short development time or the 

evaluation of different algorithm alternatives is required. In 

addition, the possibility offered by this methodology of using 

models created in Simulink during the verification process is 

an attractive feature, especially in the industrial environment 

where it can be complicated and costly to verify an 

implementation with the real system. 
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