
Development of an embedded software platform

based on Zynq FPGA SoC for Astrophysics

applications

David S. Miranda Guillén

Institute for Applied Microelectronics (IUMA)

University of Las Palmas de Gran Canaria

Las Palmas de Gran Canaria, Spain

dmiranda@iuma.ulpgc.es

Pedro Pérez Carballo

Institute for Applied Microelectronics (IUMA)

University of Las Palmas de Gran Canaria

Las Palmas de Gran Canaria, Spain

carballo@iuma.ulpgc.es

Abstract—This paper describes a software platform used for

scientific data capture in the field of astrophysics. This platform

captures, processes, analyses, and stores 32 analogue signals at

high speed. It is configured and controlled remotely via a client-

server architecture application.

Keywords - FPGA; Petalinux; Baremetal; AMP; OpenAMP;

Zynq; ZedBoard; ADC; Quijote; NFS

I. INTRODUCTION

The Instituto de Astrofísica de Canarias (IAC) and his
partners are working in the European project QUIJOTE-CMB
(Q-U-I JOint TEnerife CMB) [1], an experiment aiming the
characterization of the polarization of the Cosmic Microwave
Background, and other galactic or extragalactic physical
processes that emit in microwaves in the frequency range 10-
42GHz, and at large angular scales (1 degree resolution).

IAC propose the creation and design of a software platform
that allows an electronic system based on FPGA SoC to
capture scientific data. The system (Fig. 1) consists of a power
supply, a 32-channel AD7768 conversion subsystem [2] in
differential mode and a subsystem consisting of two
ZedBoards, each of which has a dual-core ARM Cortex™-A9
processor [3]. Both boards work together in a master-slave
configuration and communicate via an FMC interface for the
ADC configuration and sampled data transfer. For
configuration, status display and other system operations, a
client-server application is developed to perform these
operations over a network using the TCP/IP protocol.

II. SYSTEM ARCHITECTURE

The tasks of the system are shown in Fig.2. As can be seen, the
system starts from a global configuration state and enters in a
loop for data capture, processing, storing, and sending data
loop. All these processes run concurrently in both the hardware
and software domains. To maintain data consistency, a basic
criterion is the possibility to modify the system configuration
when the output buffer is empty, or the data will be discarded.
In the FPGA SoC system architecture (Fig. 3), the main blocks
and interfaces of the system can be identified.

Figure 1. Top view of the equipment

Figure 2. Main system processes

The processes shown in Fig. 2 have been mapped onto the

reference architecture, using the heterogeneous architecture of
the Zynq device [4]. The configuration processes have been
mapped into a hardware/software system on CPU0 and CPU1
as dedicated blocks. The real-time data processing and marking
processes are mapped in the hardware domain (Programmable
Logic) and the storage processes in the software domain
controlled by CPU0. Finally, data transfer processes are
mapped in the software domain on CPU1. At a second level of
task granularity, user interface management processes are
included.

TABLE I. TASK MAPPING IN HETEROGENEOUS PROCESSING RESOURCES

Task mapping

Software domain
Hardware

domain

Task
CPU0

Linux

CPU1

Baremeta

l

PL

System configuration  

Data Capture  

Processing  

Real-Time Marks 

Data Buffer   

Data Storage 

Ethernet transfer 

User Interface 

III. BLOCKS OF ARCHITECTURE

As shown in Fig. 3, the SoC FPGA Zynq is organised into
two main parts: PS (Processing System) and PL
(Programmable Logic). The PL includes a set of blocks that
control the configuration of the power supply, the matching
system, and the data conversion, as well as auxiliary signals
that control certain devices external to the equipment.

On the other hand, the PS uses two ARM Cortex A9 cores
in an asymmetric multiprocessing configuration (AMP) to
support the heterogeneous operation of the system.
Communication between the two subsystems is achieved
through shared memory and dedicated interrupt mechanisms.

IV. SOFTWARE PLATFORM

For AMP implementation, a Linux-baremetal configuration
has been used, where CPU0 (Core 0) includes a PetaLinux
Operating System adapted to the Xilinx Zynq architecture,
specifically configured for the ZedBoard, and CPU1 (Core 1)
runs a specific baremetal application for data capture. The
synchronisation of the processes running both processors uses
an unsupervised OpenAMP system [5]. This is an open-source
system for the synchronisation of processes in a heterogeneous
system that employs a message passing mechanism using
shared resources between both CPUs (Fig. 4). In this case, the
processors run independently each under its own software
stack, with no central software coordinating the operation.

For Linux system, Xilinx has a complete distribution,
Petalinux [6], which provides a development environment
based on Yocto [7], with a set of tools that allows the creation
of customised embedded systems. This distribution is
responsible for supporting the applications developed for the
configuration and management of the hardware platform.

V. DATA FLOW

To configure the system, the user accesses through a CLI
(Command Line Interface) in a client-server architecture that
facilitates the introduction and modification of key parameters
for the operation of the equipment (Fig. 5).

Figure 3. FPGA SoC system architecture overview diagram

Figure 4. Asymmetric Multi-Processing System

Figure 5. Server Booting process

CPU0 reads the data from the OCM (On-Chip Memory)
shared memory and writes the necessary files to the Linux file
system for remote storage. For this purpose, it manages the
creation of the corresponding files using the drivers available
on the system. Fig. 6 shows the data flow of the captured
samples through the processing system.

CPU0 is also responsible for running the server that
facilitates the configuration and control of the platform from a
remote client. The user can define the SPI configuration
parameters, the gain, the number of samples, etc. The data
obtained by the server from the client is sent to the hardware by
means of the corresponding designed drivers.

For security reasons, the parameters cannot be changed by
direct access to the equipment, but the configuration
parameters are sent from the client to the server running on the
CPU0 processor. The server checks the allowed value ranges
and the state of the system. This provides controlled access to
the system blocks. Communication between the PS and the PL
takes place via shared memory, where data is transmitted via a
DMA (Direct Memory Access), controlled by CPU1.
Therefore, CPU1 only writes to the shared memory, while
CPU0 only reads from the shared memory. This
communication is restricted to a specific area of system
memory that has a high data transfer (128 bits per access).

The transmission of the data processed by the platform is
sent via the Ethernet interface with a transmission speed of 1
Gb/s. It should be noted that this data must be taken on the
Ethernet frame for an interface in raw mode.

Figure 6. Data flow of captured samples

About the storage of the captured data, it was decided to

send it directly to a storage server via the NFS protocol. The
decision is justified because the system generates a significant
amount of captured data, especially when sampling at 256
KSPS for long periods of time.

VI. MAIN APPLICATION

The application that controls this client-server architecture,
write in C/C++, can be seen in Fig.7. It starts up at the
beginning of the system, where it calls the functions
responsible for each layer for the initialisation of the server, the
initial configuration of the system and the ADC, and performs
the first reading for the creation of the configuration file that
contains the system status. The server starts up with the IP
assigned to the equipment via DHCP and remains in listening
mode on the assigned ports. In addition, it starts the power
supplies for the rest of the system (ADC's) in the planned
sequence and synchronises the clocks of the master and slave
cards. This application is divided into four layers:

1. Main layer: includes the main function of the program and
is responsible for calling the functions that initialise the
server, the initial configuration of the system and the
configuration of the ADC. In addition, it performs a first
read of the system to create a status file.

2. Communication layer: handles TCP/IP connections and
communications between client and server.

3. Command management layer: receives commands and
verifies that they are correct or can be processed,
generating error messages if they are not.

4. Logic layer: handles all the application logic, i.e., it
processes the data received from the commands, validates
them, and communicates with the lower layer to carry out
the configuration of the commands received. This layer is
supported by different Linux drivers, developed for this
application and low-level functions, and designed to
implement the necessary functions to control the logic of
the AD and the hardware system implemented on the PL
of the Zynq device.

Figure 7. Server application architecture

Figure 8. Server functions call map

VII. PROFILING

The last step in system validation is the profiling stage. In

this stage it is necessary to use profiling tools to detect those

errors that have occurred during the programming stage. This

step has been carried out with different tools such as Valgrind

and KCachegrind (Fig. 8) for the study of memory usage and

the dd command for the analysis of network bandwidth.

The data obtained with the dd tool shows that the maximum

transfer speed that can be achieved on the system is

approximately 50 MB/s. This is far from the manufacturer's

specified speed of 125 MB/s (1 Gb/s), so this is a bottleneck for

transferring a large data stream [8] at very high capture rates

(Fig. 9).

Figure 9. Theoretical transfer speed vs. actual transfer speed

VIII. CONCLUSION

The implementation of a Linux-baremetal AMP system for

the integrated management of the system has been successfully

realised. The baremetal part controls the data capture and

communicates with the Linux part for data processing. The

latter in turn, manages the system resources in an optimal way

and handles them responsibly depending on the state of the

system. At high capture speeds, bottlenecks can occur in the

Ethernet transfer, therefore, solutions such as applying jumbo

frames in the NFS protocol and investigating those kernel

variables related to the TCP/IP protocol that can generate a

detriment in the performance of the Ethernet connection are

under study.

REFERENCES

[1] IAC. (n.d.). QUIJOTE | Instituto de Astrofísica de Canarias • IAC.
Retrieved March 7, 2022, from https://www.iac.es/es/proyectos/quijote

[2] Analog Devices Inc. (2021). AD7768/AD7768-4.
https://www.analog.com/media/en/technical-documentation/data-
sheets/ad7768-chips.pdf

[3] Avnet Electronics Marketing. (2012). ZedBoard ZynqTM Evaluation and
Development Hardware User’s Guide.
https://digilent.com/reference/_media/zedboard:zedboard_ug.pdf

[4] Xilinx Inc. (2014). Zynq-7000 All Programmable Software Developers
Guide. 821, 93.
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-
7000-swdev.pdf

[5] Xilinx. (n.d.). OpenAMP - Xilinx Wiki - Confluence. Retrieved June 11,
2022, from https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP

[6] Xilinx Inc. (2020). PetaLinux Tools Documentation Reference Guide.
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_
manuals/xilinx2020_1/ug1144-petalinux-tools-reference-guide.pdf

[7] Linux Foundation. (2022). Software – Yocto Project.
https://docs.yoctoproject.org/index.html

[8] Moorthy, P., & Kapre, N. (n.d.). A Case for Embedded FPGA-based
SoCs in Energy-Efficient Acceleration of Graph Problems.

	I. Introduction
	II. System architecture
	III. Blocks of architecture
	IV. Software platform
	V. Data flow
	VI. Main Application
	VII. Profiling
	VIII. Conclusion
	References

