

EN ELECTRÓNICA Y TELECOMUNICACIÓN APLICADAS

Implementación MPSoC FPGA de Algoritmos de Machine Learning para Aplicaciones Clínicas usando Metodologías de diseño de Alto Nivel

Estudiante: Mario Daniel Guanche Hernández < mario.guanche 101@alu.ulpgc.es>

Tutores: Dr. Pedro Pérez Carballo < carballo@iuma.ulpgc.es > Sonia Raquel León Martín <slmartin@iuma.ulpgc.es>

Mayo 2023

Motivación

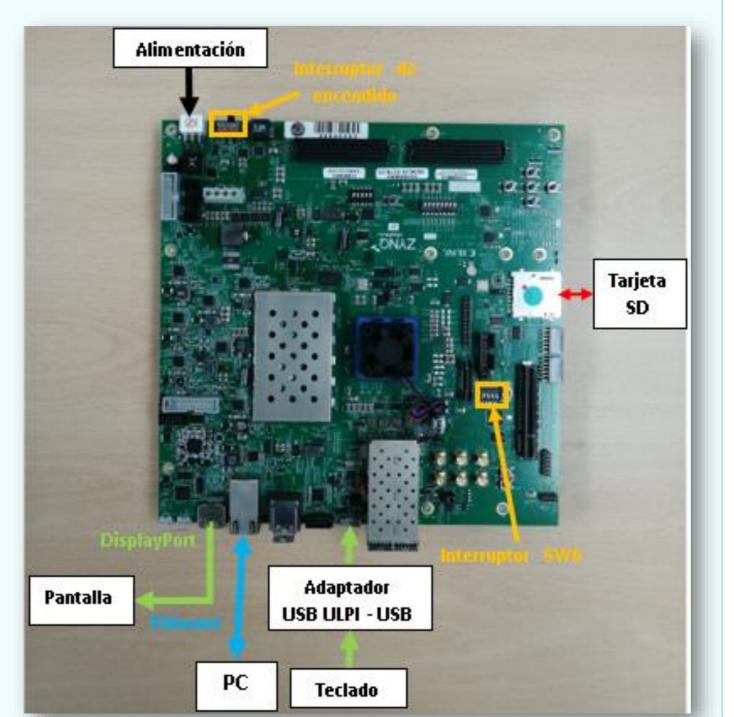
Aplicación para detectar cáncer de piel con imágenes hiperespectrales:

- Se identifica afección y distribución.
- Relación entre patología y coeficientes de absorción y reflexión espectrales.
- No invasiva y no ionizante.
- Análisis automatizable mediante machine learning (k-means).
- Muchos datos, tiempo y energía: necesidad de aceleración hardware.

RGB Multiespectral Hiperespectral

Tecnología

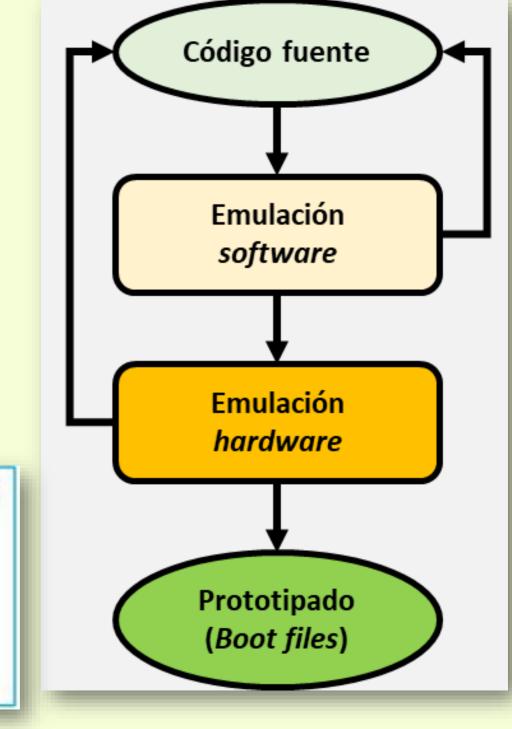
- aceleración hardware contempladas.
 - GPUs (referencia).
 - FPGAs (implementada).
- Plataforma **Zynq Ultrascale+ MPSoC ZCU102**.
 - Implementación heterogénea
 - Sistema empotrado MPSoC
 - Microprocesador APU como host o elemento central.
 - **FPGA** como acelerador *hardware*.
 - Arranque mediante tarjeta SD



Metodología

Programación

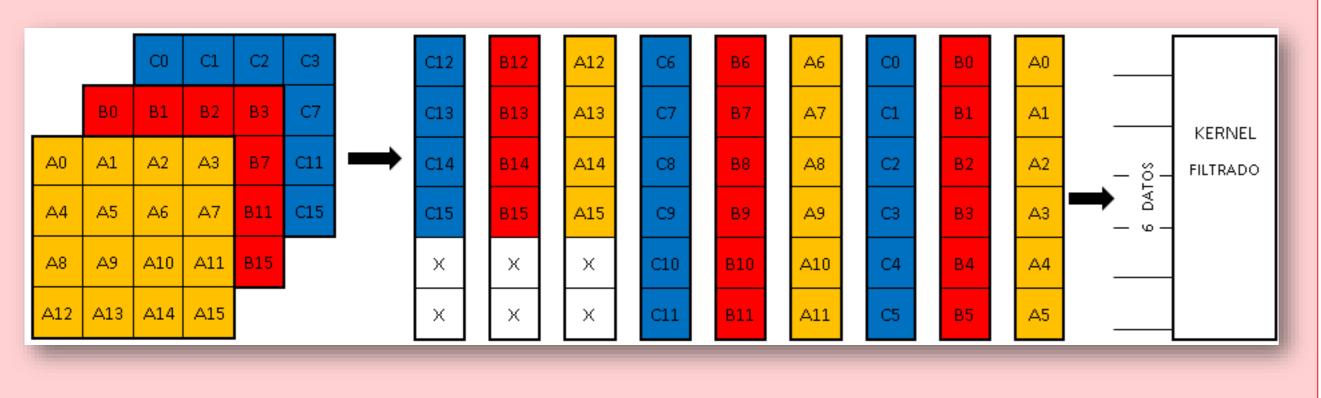
- Host en C/C++ y SO Linux.
- Kernels FPGA en Vitis HLS (C/C++ y directivas #pragma).
- Interacción host-kernels mediante OpenCL



Flujo de diseño.

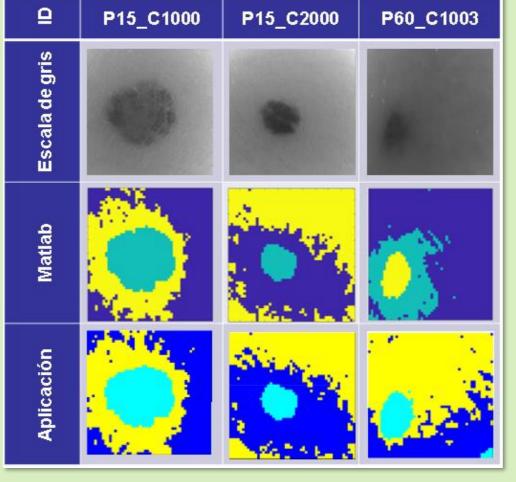
Diseño

- Solución *hardware/software* diseñada con especificaciones de alto nivel: aproximación algorítmica.
- Aplicación *host*: sincronización y transferencia de datos OpenCL.
- **Aceleradores** *hardware*: diseño mediante Vitis implementados como kernels FPGA
 - Filtrado de la imagen (multFilter).
 - Normalizado de la imagen (normalizers).
 - Clusterización de la imagen (top_kmeans).
 - Procesamiento en *streaming* de los *kernels* FPGA.
 - Configuración estática.
 - Tamaño de los datos (1, 2, 4 o 8 bytes).
 - Paralelismo de los kernels FPGA.
- Aplicación invocada desde ventana de comandos Linux. Se especifica.
 - Criterio de ordenación (BSQ, BIL o BIP).
 - Dimensiones (ancho x largo x espectro).



Resultados

Segmentación de las imágenes en 3 clusters.



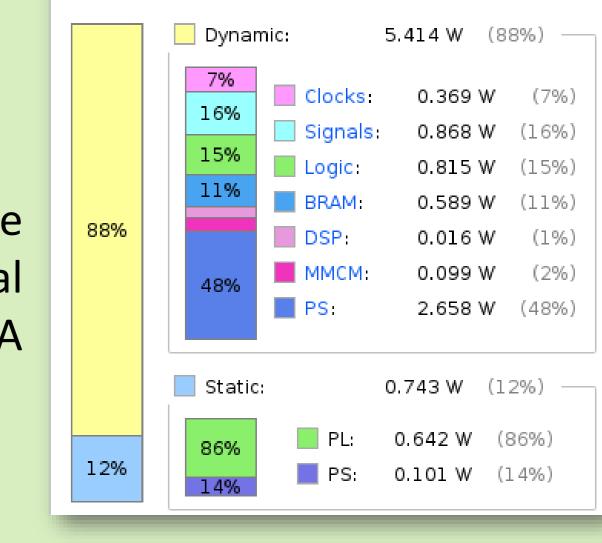
- Utilización de la FPGA.
- Impacto significativo de las interconexiones de los kernels (HPO)

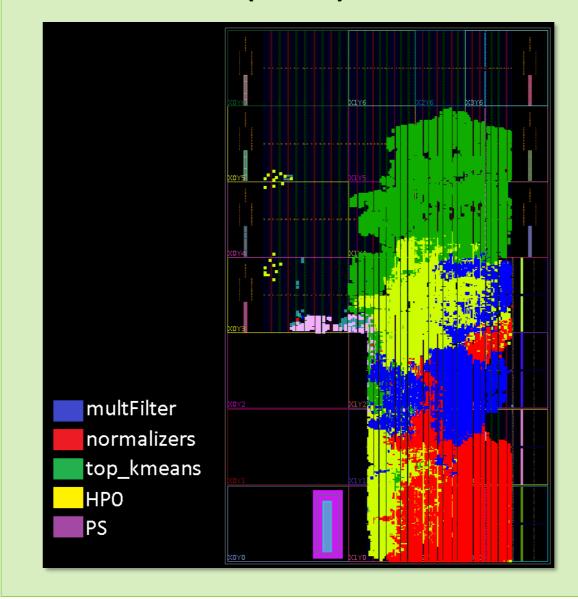
Mejora del throughput.

		multFilter (1 iter) (µs)	normalizers (1 iter) (µs)	top_kmeans (1 iter) (µs)	Total (s)
	sw_emu	217190,00	220520,00	180500,00	48885,83
	hw	95,56	97,32	90,43	22,77
	Mejora (hw/sw_emu)	2272,8	2265,9	1996,0	2146,9
	NVIDIA RTX 2080				0,8
	NVIDIA Tesla K40				0,33
Co	nsumo de po	otencia.	On-Chip Power		

6,16 W.

- Mayoritariamente potencia dinámica
- Mejor relación entre carga computacional y energía en FPGA que en el PS (host)





Conclusiones

- Se disciernen correctamente las regiones según su grado de afección.
- La aceleración hardware.
 - **†Velocidad** de cómputo (factor superior a 1000).
 - ↓ Consumo energético.

