
MPSoC FPGA Implementation of Algorithms of

Machine Learning for Clinical Applications Using

High-Level Design Methodology

Mario Daniel Guanche Hernández, Pedro Pérez Carballo, Sonia Raquel León Martín

Instituto Universitario de Microelectrónica Aplicada (IUMA), Universidad de Las Palmas de Gran Canaria (ULPGC)

Las Palmas de Gran Canaria, Spain

mguanche@iuma.ulpgc.es

Abstract— This work presents the design of a hardware/software

system designed using high-level design methodologies, consisting

of a software application running on a host and a set of hardware

acceleration nodes implemented in an FPGA device. The ultimate

goal is to have an integrated system on an MPSoC FPGA device

for skin cancer detection using both hyperspectral imaging and a

k-means algorithm. The hardware acceleration system is

designed using three FPGA kernels. The first two filter and

normalize the hyperspectral image. The last kernel then runs k-

means to segment the image into three regions: healthy skin and

a lesion. FPGA acceleration significantly improves the

performance and power consumption of the application

compared to software execution or other alternatives such as

implementation on GPUs.

Keywords – hyperspectral imaging; k-means; MPSoC; FPGA;

HLS; skin cancer.

I. INTRODUCTION

Hyperspectral imaging (HSI) is a technique that combines
spatial and spectral information. By spanning hundreds of
spectral bands, HSI can capture a wealth of information, both
within and beyond the range of vision of the human eye. Each
pixel in an HSI image contains a near-continuous spectrum
called a spectral signature[1]. These characteristics make
hyperspectral imaging useful for assessing the dispersion of
material components. As a result, this technique is gaining
relevance in many fields, such as medicine and healthcare in
general [2], [3].

In this work, a set of design techniques have been
developed to enable the development of an application that
uses hyperspectral imaging for skin cancer detection. To
improve its performance, the application takes advantage of
hardware acceleration using FPGA MPSoC devices. As this is
a data-intensive problem, it is necessary, on the one hand, to
study the computational requirements and, on the other hand,
the data transfer to obtain results in reasonable times with
reasonable power consumption requirements.

The application requires a first pre-processing stage to
minimize the unwanted influence of various factors generated
during the hyperspectral image capture, apart from the material
nature of what is captured in the image, including artifacts in
the cameras, and lighting effects, among others. In addition, it

includes a second stage that allows automatic discrimination of
the regions of skin tissue evaluated with different states of
affectation by using the spectral information of the pre-
processed pixels. For this purpose, an unsupervised automatic
learning algorithm based on k-means is used[2], [4].

This application allows skin cancer cases to be diagnosed
with a better combination of speed and accuracy when
compared to other techniques, such as direct visual
examination [5]. The speed improvements are due to the use of
hyperspectral imaging that provides a broader and more
detailed electromagnetic spectrum in the evaluation of the skin
than direct visual examination can provide. This quality
increases the accuracy in delineating areas of skin involvement,
with the advantage that hyperspectral imaging is noninvasive
and nonionizing [3], [5].

The main drawback of applications of techniques using
hyperspectral imaging and machine learning is the enormous
amount of data and processing required. This situation makes
the execution in serial or sparsely parallelized computation
models of the application, as is the case of microprocessors,
very time-consuming and energy-intensive. However, the
algorithms associated with the processing of these applications
offer good possibilities of parallelism, the exploitation of which
would greatly reduce the execution time, in addition to
improving the ratio between time and energy consumption. For
this purpose, it has been decided to implement a set of kernels
to perform the hardware acceleration of the application. For
this purpose, a GPU-based implementation has been used as a
reference [5].

II. MATERIALS & METHODS

A. HS skin cancer dataset

The input data set for this application consists of three
hyperspectral images (P15_C1000, "P15_C2000",
"P60_C1003). These images have a spatial dimensionality of
50 x 50. The spectral dimensionality consists of 125 bands.
However, the first 4 bands and the last 5 bands are discarded
because they do not include significant information. Within the
image, each data is a 16-bit unsigned integer. The image
content is serialized following the band sequential criterion
(BSQ). Figure 1 presents these images as grayscale images.

P15_C1000 P15_C2000 P60_C1003

Figure 1. Hyperspectral images [6]

B. Target system

The prototyping platform used for this application is the
Xilinx ZCU102 board, which includes a Zynq UltraScale+
XCZU9EG-2FFVB1156 MPSoC device. The MPSoC is
organized into two distinct systems, PS (Processing System),
and PL (Programmable Logic), all included inside the same
chip. The main components of the PS are the microprocessors,
where the APU (Application Processing Unit), the RPU (Real-
Time Processing Unit), and the GPU (Graphics Processing
Unit) are located. APU consists of four Cortex™-A53 MPCore
processors, an L2 cache, and related circuits. PL is constituted
by the FPGA fabrics, including hardware resources that are
highly replicated, like as LUTs (Look-Up Table), BRAMs
(Block RAM), and DSPs (Digital Signal Processors) [7], [8],
[9].

III. ARCHITECTURE DESIGN

The basic execution scheme of this application consists of a
host, executed on a microprocessor system, which sequentially
processes the computation flow with high data dependency and
is supported by a set of kernels implemented in hardware,
optimized to perform specific functions. The host manages data
transfers and synchronization with hardware accelerators.

The execution of the application has two stages. The first
stage corresponds to pre-processing. This stage has three main
steps: (1) remove extreme spectral bands; (2) filter the spectral
signatures of the pixels; (3) normalize the spectral signatures of
the pixel.

Because hyperspectral cameras have poor sensitivity in
extreme spectral bands, it is necessary to filter these bands. For
this application, the first four and the last five spectral bands
are discarded. It is possible to set other configurations during
application construction.

The next step is smooth filtering for each pixel in the
image, which reduces the influence of spectral noise on the
image data. The filtering algorithm processes each spectral
band by averaging the pixel value in that band with a
symmetric number of upper and lower bands lying next to that
band. The total amount of data on average for each spectral
band is typically five. However, another number can be set
during compilation. Particular cases are those spectral bands
that are close to the upper or lower limit of the spectrum
considered and therefore do not have enough spectral bands on
one of their sides. For such cases, less data is considered, but
symmetry is maintained.

For the filtering step, the host uses a dedicated kernel,
implemented on the FPGA. This kernel uses the hardware
implementation of the smooth filtering algorithm and saves the

maximum, minimum, and scale (maximum-minimum) values
found in the filtered pixels in the evaluation. This process is
parallelized for a specific number of pixels, defined during
kernel configuration. Figure 2 shows a simplified diagram of
the operation of the kernel for filtering.

Due to the operation of this first FPGA kernel, the image
data must be sent to this kernel in a specific order. During this
process, values of the rejected spectral bands are avoided, thus
fulfilling the first step in the preprocessing.

Figure 2. The basic architecture of the filtering kernel.

Each data in the same batch belongs to the same spectral
band. In addition, data in the same batch belongs to adjacent
pixels if the spatial dimensionality of the image has been
serialized. When there are not enough new pixels to fill a batch,
padding values are included. Figure 3 shows how the image
content is taken and transferred to the kernel for the case of a
BSQ image and kernel processing parallelism of 6. This
procedure is analogous to any other possible case.

Figure 3. Ordering and transfer of the image content to the filtering kernel

The normalization process consists of scaling the spectral
signature of each pixel to values between 0 and 1. This
homogenizes the amplitude in the spectral signature of the
different pixels in the image. A new FPGA kernel is used to
perform the normalization process. This kernel takes the data,
maximum, and scale values of the filtered pixels calculated by
the previous kernel. The normalization kernel must be
parallelized for the same pixel sizes as the filtering kernel. In
addition, the filtered pixels are normalized in the same order in
which they were generated.

The second step is to use k-means to distinguish regions in
the skin tissue from the image according to their different states
of affection. The number of regions is equal to the number of
clusters in the k-means algorithm. According to [5], the best
results are obtained for segmentation in 3 clusters. In this
application, the same number of clusters is considered, but the
application can be rebuilt for another number. The k-means
algorithm is executed on FPGA as a kernel. This kernel has 4
execution modes: (1) centroid initialization; (2) distance
estimation; (3) centroid update; (4) centroid transfer.

The first mode corresponds to the centroid initialization,
where for each centroid a different pixel is selected as its initial
spectral signature. These pixels are sent one by one to be

loaded into the FPGA registers. These pixels are sent in
batches of equal size so that one is introduced to the FPGA per
kernel execution. This mode is started once per image for
evaluation.

In the second mode, the spectral signature of a target pixel
is compared with the centroids to determine the new centroid to
which the pixel will be reassigned. For this purpose, the pixel
to be evaluated is sent in batches of the same size as in the first
mode. Each batch in this mode is used only once per kernel
execution. On each run, the squared difference between the
pixel and a centroid is calculated for the spectral bands sent in
the batch. The resulting values are put into an adder to get their
sum "S" according to (1), where "px(i)" and "ctr(i)" are the
spectral bands of the pixel and the centroid, respectively.

S = ∑((px(i) – ctr(i))2) (1)

The adder will follow a tree structure to simplify pipelining
and reduce runtime. The calculated "S" means the distance
between the pixel and the centroid for the spectral bands taken
in this execution. This value is accumulated in a register. This
register stores the "S" value for the spectral bands compared
between the pixel and the centroid over several consecutive
kernel executions. This process is repeated within the same
executions for all centroids. In this way, after the execution for
the last batch of pixels is finished, this register will store the
distances between the pixel and each centroid. These distances
are passed to a comparator. This comparator, following a tree
structure, determines the centroid for which a minimum
distance has been obtained and returns it to the host as the new
centroid for the pixel. When this process is complete, this
execution mode is reset and the kernel switches to centroid
update mode.

The third mode corresponds to the centroid update. In this
mode, the centroids affected by the last pixel redistribution are
updated. The spectral signature of the centroids consists of the
average spectral signature of the pixels belonging to the
centroids. This average is obtained by dividing the sum of the
pixels in each spectral band by the number of pixels within the
centroid. Therefore, updating the centroids means that in each
spectral band, the pixel is subtracted from the sum of the old
centroid and added to one of the new centroids before the
averages are recalculated. These processes are parallelized to
the same number of spectral bands as the previous two
execution modes. Thus, each execution of this mode processes
only one batch of pixel data of the same size as in the other
modes. These batches are not stored in the FPGA from the
previous runs for distance estimation. Therefore, they must be
resent to the kernel from the host.

If the pixel evaluated for the centroids update is not the last
pixel of the image, the distance evaluation execution mode is
set for the next pixel. On the other hand, if such a pixel is the
last pixel of the image, the k-means termination criteria are
evaluated. These termination criteria return true if less than a
specified proportion of pixels from the image have been
redistributed in the last k-means iteration, or if a specified
number of k-means iterations has been exceeded. If it returns
true, the k-means kernel is set to centroid transfer mode.
Otherwise, the k-means algorithm is repeated for the entire

image, and the distance estimation is restarted for the first
pixel.

In centroids transfer mode, the final centroids are
transferred back to the host. This transfer is divided into
batches of the same size as the previous execution modes. One
batch is sent per kernel run. After the centroids transfer is
complete, the kernel returns to the centroids initialization mode
for possible new images.

IV. APPLICATION DEVELOPMENT

From the application development point of view, the Vitis
IDE, a development platform provided by Xilinx, is used. The
host is programmed using C/C++ and standard C/C++ libraries.
On the other hand, the kernels are designed according to the
HLS (High-Level Synthesis) methodology. This methodology
allows the hardware architecture of the kernels to be described
at the algorithmic level, deriving the optimized RTL
architecture through the introduction of compilation directives
and synthesis constraints. These directives are marked as
"#pragma HLS" in the kernel source code [10], [11], [12].
Interaction and synchronization between the host and the
kernels are programmed using OpenCL via C++ wrappers from
the host.

V. IMPLEMENTATION

The Zynq Ultrascale+ MPSoC ZCU102 prototyping board
was used for this research.

The entire application is designed to be implemented on the
MPSoC. Thus, the host is designed to run on the PS while the
accelerator kernels are implemented on the PL.

The platform uses AXI4 (Advanced eXtensible Interface)
interfaces for communication between the host and the kernels.
In this sense, four AXI4 interfaces are used for data transfers
between the host and the filtering kernel, three for the
normalization kernel, and two for the k-means kernel.
However, all these ports are connected to the same PS-PL port
called HP0 via a dedicated interconnect IP. An important
aspect of the AXI4 interfaces is that they support a maximum
data transfer width of 512 bits. Therefore, if a batch of data to
be transferred on a line exceeds this length, the application is
configured to transfer the data in as many transfers as
necessary in burst mode [13]. Figure 4 presents the basic
schematic of the application.

This application can be adapted to other SoCs and MPSoCs
if they contain at least a microprocessor, an FPGA, and
sufficient AXI4 interfaces. However, the parallel processing of
the core must be adapted to the availability of FPGA resources.
The application is loaded into the MPSoC via the SD card slot
on the prototyping board. It must contain the executable file of
the application to be run on the host and the binary file to
configure the FPGA. In addition to these files, some additional
files are needed to boot the board and to implement a Linux
operating system and file system to support the application.
The interaction with the system is done through a PC terminal
connected to the MPSoC via Ethernet. For this interaction, an
IP address for the prototyping board must be set and known in
advance.

Figure 4. Basic diagram for the platform

VI. DESIGN VALIDATION

Following the HLS methodology, the design was validated
using both software and hardware emulations. Both emulations
are run by the QEMU (Quick Emulator) emulator on a
computer running Linux OS. This emulator pretends to be the
target APU for the host in both emulations. However, the
emulations differ for the FPGA kernels [14].

Software emulation interprets FPGA kernels to run on the
APU as host code. This emulation option is compiled and
executed first because it is faster. However, software emulation
can only verify that the kernels are algorithmically correct. As
a result, aspects such as FPGA utilization and timing are not
considered for each kernel. Also, this type of emulation does
not take into account the parallelism in kernel processing that
occurs in the FPGA implementation.

In hardware emulation, kernels are interpreted to be
implemented and executed on the target FPGA. This change
makes this emulation choice more time-consuming than
software emulation. However, it allows further validation of
the FPGA kernel by checking the feasibility and performance
of its implementation. In addition, running this emulation
makes it possible to validate that any problem in the FPGA
implementation does not change the correctness of the output
returned by the kernels. These features make the hardware
emulation compile and run after the software emulation, as a
second level to validate the kernels. [14].

VII. FINAL APPLICATION

This application is intended to be invoked from the shell
command window. The main input data is the hyperspectral
image to be evaluated, specified as a binary file. Optionally, the
user can specify the dimensions of the hyperspectral image
(length, width, and spectrum) and the serialization criterion
followed by the image data in the binary file. These features
can be specified directly in the application call, or indirectly via
a text file. If not specified, default values are used.

The application can adapt to hyperspectral images of
different dimensionalities. Thus, the application can be

configured to work with images no larger than 2^31-1 bytes. In
addition, the dimensions of the evaluated images can change
from one run to another without rebuilding the application, if
they do not exceed the limits configured at compile time about
the maximum number of pixels and spectral bands allowed.
The serialization of the input image data can be Bands
Interleaved by Pixel (BIP), Bands Interleaved by Line (BIL), or
Band Sequential Sequential [1].

This application can adapt to any of these without
rebuilding. Another configurable aspect is the data type of each
datum from the hyperspectral input image content. On this
topic, the application can only work with unsigned integers or
fixed-point data. However, the application can be configured
during compilation to work with data of 1, 2, 4, or 8 bytes.

VIII. PERFORMANCE RESULTS

This section discusses the performance of the application.
This performance is measured in terms of FPGA resource
utilization, time, and power. Finally, the clustering results of
the kernel are evaluated.

A. FPGA utilization

According to the results of the design, the FPGA kernels
can operate at a clock speed of up to 150 MHz. The utilization
of the FPGA by the kernels is shown in TABLE I. For this
evaluation, the kernels are considered to have a parallelism of
16 data for the preprocessing kernels and 8 data for the k-
means kernel. The Platform row refers to the FPGA resources
required by the entire system. The HP0 row refers to the
resources involved used to switch the HP0 port in the PS to
each data port in each FPGA kernel. The other row refers to
resources used for additional purposes, such as switching
between host and kernels and resetting the kernels. This usage
is distributed throughout the FPGA as shown in Figure 5,
where each kernel and HP0 is identified by the colors shown
there.

TABLE I. UTILIZATION OF FPGA RESOURCES.

IP
 FPGA resources

 FF LUT DSP BRAM

filtering 22342 16887 0 16.5

normalization 32304 26294 0 12.5

k-means 29391 30271 25 53

HP0 21986 22907 0 136.5

Others 1947 1148 0 0

Platform 107970 105109 25 219

As shown in TABLE I, the amounts of FPGA resources
utilized for switching are quite significant. However, they are
mainly targeted to switch data frame transfers. Besides, the
utilization of every resource in “top_kmeans” is greater or very
similar to that obtained in the other kernels. This occurs even
though the kernel’s parallelization is half of the other kernels.

In the case of flip-flops, it must be emphasized that
“top_kmeans” requires more complex coordination among its
iterations than others. This is because it must coordinate the 4
execution modes and the access to the information about

centroids stored within. Moreover, the “top_kmeans” utilizes
more LUTs as it involves more and more complex operations.

Figure 5. FPGA utilization

Besides, the special complexity of some of these operations
leads to the use of DSPs in “top_kmeans” for multiplication,
while its usage is inexistent in the other kernels. Also, the
utilization of BRAMs in “top_kmeans” is much higher than in
the other kernels due to the need to store information about the
centroids. It must be remembered that this information implies
the entire spectral signature of every centroid and the
summation of pixels for every spectral band at each centroid.

B. Kernel’s time performance

Time performance results are shown in TABLE II for every
kernel, being quantified in kernel clock cycles. The term
“Initiation Interval” means the minimum elapsed time between
two 2 consecutive executions of the kernel thanks to pipelining.

TABLE II. TIME PERFORMANCE BY EVERY KERNEL.

Kernel function
Time feature (FPGA clock cycles)

Initiation Interval Latency

filtering 2 239

normalization 1 250

k-means 40 151

The most significant difference between the kernels is
found in the initiation interval. In that way, while this value is
minimal for the filtering and normalization kernels, it is much
greater for the k-means kernel. This last situation occurs
because of the mutual data dependence between the execution
modes for the distance assessment and the centroids update.
More specifically, while the distance assessment needs the last
centroids update finishes to know the spectral signatures of the
centroids, the centroids update must wait for the last distance
assessment to know the new centroid for reallocating the pixel.

C. Application time performance

Employing the HS dataset, the average runtime on one
iteration has been measured for every kernel. These runtimes
include the kernels’ execution, but also the host’s execution
required. Also, they consider the synchronization and
parallelism between the host and kernels. Besides, the runtime
has been measured for the entire application, except for the
display of the results. These results were obtained for software
emulation (row “sw_emu”) and actual execution on the
MPSoC (row “hw”).

Moreover, the “GPU 1” and “GPU 2” rows are results for
the GPU-accelerated similar application from [5], for which 2
implementation options are assessed. This GPU application
also includes Spectral Angle Mapper (SAM) and Support
Vector Machines (SVM) as part of its running. “GPU 1” refers
to the NVIDIA RTX 2080 GPU implementation in [5], while
“GPU 2” means the NVIDIA Tesla K40 GPU.

TABLE III. RUNTIME FOR EVERY KERNEL AND THE WHOLE APPLICATION

Execution

Part of the application

multFilter normalizers top_kmeans Total

sw_emu 217 ms 221 ms 181 ms 48886 s

hw 95.56 μs 97.3 μs 90.4 μs 22.77 s

GPU 1 0.8 s

GPU 2 0.33 s

If results from “hw” are compared to those from
“sw_emu”, FPGA acceleration is concluded to relevantly
enhance the application’s throughput. In addition, both
“multFilter” and “normalizers” leverage parallelism in terms of
throughput with the same effectiveness. This last happening
means that making kernels “multFilter” and “normalizers” can
have different parallelism capabilities is useless.

D. Energy performance

The estimated power needed by the application’s running
goes around 6.16 W. This consumption is mostly dynamic
power (88%), whereas static power is the minor part (12%).
The static power is mainly consumed by the FPGA (86%), due
to the high number of components and configuration that its
utilization requires. The dynamic power is majorly consumed
by the host’s running (48%) but stays close to FPGA’s running
(43%). The remaining 9% is employed in clock signals.

By this power data, it is seen that FPGA kernels involve a
part of the power consumption in the application which is more
meaningless than the part of the computational load they
process. In this way, FPGA acceleration is concluded to help in
saving energy, both by reducing runtime and power.

E. Qualitative results

According to the results, the segmentations made by the
application fit well to the spread of the skin cancer lesion. This
happening can be seen in Figure 6, where images are also

represented in grayscale to ease the comparison. Besides,
results obtained by a CPU function written in Matlab that
follows a similar algorithm are also shown.

 P15_C1000 P15_C2000 P60_C1003

G
ra

y
sc

al
e

M
at

la
b

O
u
r
ap

p
li
ca

ti
o
n

Figure 6. Image segmentation results

In the image “P60_C1003”, the clustering from the
application differs from Matlab. According to the grayscale
image, this difference is because the affection is more blurred
than in the other images. Besides, pixels from the lower-right
corner of “P60_C1003” are misclassified. It happens for the
influence of “dead pixels”, consisting of a flaw in the
hyperspectral camera.

IX. CONCLUSIONS AND FUTURE WORK

The final application provides good aid to dermatologists in
detecting skin cancer. This quality is seen in the segmentation
images, which fit quite well with the spread of the lesion seen
in the grayscale images. Moreover, using FPGA acceleration
helps to shorten runtime and energy consumption if compared
to not hardware accelerated choices. Besides, this application
has runtime and compile-time adaptation to some aspects of the
input hyperspectral image. This guarantees the application’s
utility under many work circumstances.

Regarding the FPGA kernels, compile-time configuration
options have been enabled to ease the application’s
adaptability. The most characteristic and common option to
configure for these kernels is their parallelism, by which they
can be adapted to the availability of FPGA resources. Also,
these kernels have been designed to have as much pipelining
capability as possible due to data dependencies among their
algorithm.

Some future works for this project may be: (1) exploring
dynamic FPGA reconfiguration to make every FPGA kernel
have more available FPGA resources; (2) implementing

labeling of every cluster by SAM (Spectral Angle Mapper); (3)
changing k-means stage to have a better pipelining.

REFERENCES

[1] J. Qin, “Hyperspectral imaging instruments,” in Hyperspectral Imaging
for Food Quality Analysis and Control, D. Sun, Ed. Academic Press, 2010,
pp. 129–172 [Online]. Available: https://doi.org/10.1016/B978-0-12-374753-
2.10005-X

[2] M. Borengasser, W. S. Hungate, and R. Watkins, Hyperspectral remote
sensing : principles and applications, 1st ed. CRC Press, 2007 [Online].
Available:
http://search.ebscohost.com/login.aspx?direct=true&db=cat07429a&AN=ulpg
c.576063&site=eds-live

[3] H. Fabelo et al., “Spatio-spectral classification of hyperspectral images
for brain cancer detection during surgical operations,” PLOS ONE, vol. 13,
no. 3, pp. 1–27, Mar. 2018, doi: 10.1371/journal.pone.0193721. [Online].
Available: https://doi.org/10.1371/journal.pone.0193721

[4] M. Kubat, An Introduction to Machine Learning. Springer International
Publishing, 2015 [Online]. Available:
https://www.springer.com/gp/book/9783319348865. [Accessed: Apr. 26,
2020]

[5] E. Torti et al., “Parallel Classification Pipelines for Skin Cancer
Detection Exploiting Hyperspectral Imaging on Hybrid Systems,” Electronics,
vol. 9, no. 9, 2020, doi: 10.3390/electronics9091503. [Online]. Available:
https://doi.org/10.3390/electronics9091503

[6] R. León Martín et al., “Non-Invasive Skin Cancer Diagnosis Using
Hyperspectral Imaging for In-Situ Clinical Support,” Journal of Clinical
Medicine, vol. 9, no. 6, 2020, doi: 10.3390/jcm9061662. [Online]. Available:
https://www.mdpi.com/2077-0383/9/6/1662

[7] Xilinx Inc, “Zynq UltraScale+ MPSoC Data Sheet: Overview (DS891),”
2019 [Online]. Available:
www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-
plus-overview.pdf. [Accessed: Apr. 14, 2021]

[8] L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and B. Stewart,
Exploring Zynq ® MPSoC With PYNQ and Machine Learning Applications.
Glasgow, Scotland, UK: Strathclyde Academic Media, 2019 [Online].
Available: https://www.zynq-mpsoc-book.com/. [Accessed: Apr. 16, 2021]

[9] Xilinx Inc, “ZCU102 Evaluation Board User Guide,” 2019 [Online].
Available: www.xilinx.com/boards_and_kits/zcu102/ug1182-zcu102-eval-
bd.pdf. [Accessed: Apr. 22, 2021]

[10] Xilinx Inc, “HLS Pragma,” 2021. [Online]. Available:
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/pragma-HLS-
interface. [Accessed: Nov. 14, 2022]

[11] Xilinx Inc, “Hardware Function Optimization Methodology,” in Vivado
HLS Optimization Methodology Guide, 2018, p. 12 [Online]. Available:
https://www.xilinx.com/htmldocs/xilinx2017_4/sdaccel_doc/asf15169063877
25.html

[12] Xilinx Inc, “High-Level Synthesis,” in Vivado Design Suite User Guide,
2021 [Online]. Available:
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xi
linx2020_2/ug902-vivado-high-level-
synthesis.pdf#nameddest=xApplyingOptimizationDirectives

[13] Xilinx Inc, “Controlling AXI4 Burst Behavior,” Vitis High-Level
Synthesis User Guide (UG1399), 2021. [Online]. Available:
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Controlling-AXI4-
Burst-Behavior. [Accessed: Jul. 28, 2022]

[14] Xilinx Inc, “Building and Running the Application,” 2022 [Online].
Available: https://docs.xilinx.com/r/2021.2-English/ug1393-vitis-application-
acceleration/Building-and-Running-the-Application. [Accessed: Nov. 14,
2022]

	I. Introduction
	II. Materials & Methods
	A. HS skin cancer dataset
	B. Target system

	III. Architecture design
	IV. Application development
	V. Implementation
	VI. Design validation
	VII. Final application
	VIII. Performance results
	A. FPGA utilization
	B. Kernel’s time performance
	C. Application time performance
	D. Energy performance
	E. Qualitative results

	IX. Conclusions and future work
	References

