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Abstract— This work presents the design of a hardware/software 

system designed using high-level design methodologies, consisting 

of a software application running on a host and a set of hardware 

acceleration nodes implemented in an FPGA device. The ultimate 

goal is to have an integrated system on an MPSoC FPGA device 

for skin cancer detection using both hyperspectral imaging and a 

k-means algorithm. The hardware acceleration system is 

designed using three FPGA kernels. The first two filter and 

normalize the hyperspectral image. The last kernel then runs k-

means to segment the image into three regions: healthy skin and 

a lesion. FPGA acceleration significantly improves the 

performance and power consumption of the application 

compared to software execution or other alternatives such as 

implementation on GPUs. 

Keywords – hyperspectral imaging; k-means; MPSoC; FPGA; 

HLS; skin cancer. 

I.  INTRODUCTION 

Hyperspectral imaging (HSI) is a technique that combines 
spatial and spectral information. By spanning hundreds of 
spectral bands, HSI can capture a wealth of information, both 
within and beyond the range of vision of the human eye. Each 
pixel in an HSI image contains a near-continuous spectrum 
called a spectral signature[1]. These characteristics make 
hyperspectral imaging useful for assessing the dispersion of 
material components. As a result, this technique is gaining 
relevance in many fields, such as medicine and healthcare in 
general [2], [3]. 

In this work, a set of design techniques have been 
developed to enable the development of an application that 
uses hyperspectral imaging for skin cancer detection. To 
improve its performance, the application takes advantage of 
hardware acceleration using FPGA MPSoC devices.  As this is 
a data-intensive problem, it is necessary, on the one hand, to 
study the computational requirements and, on the other hand, 
the data transfer to obtain results in reasonable times with 
reasonable power consumption requirements.  

The application requires a first pre-processing stage to 
minimize the unwanted influence of various factors generated 
during the hyperspectral image capture, apart from the material 
nature of what is captured in the image, including artifacts in 
the cameras, and lighting effects, among others. In addition, it 

includes a second stage that allows automatic discrimination of 
the regions of skin tissue evaluated with different states of 
affectation by using the spectral information of the pre-
processed pixels. For this purpose, an unsupervised automatic 
learning algorithm based on k-means is used[2], [4]. 

This application allows skin cancer cases to be diagnosed 
with a better combination of speed and accuracy when 
compared to other techniques, such as direct visual 
examination [5]. The speed improvements are due to the use of 
hyperspectral imaging that provides a broader and more 
detailed electromagnetic spectrum in the evaluation of the skin 
than direct visual examination can provide. This quality 
increases the accuracy in delineating areas of skin involvement, 
with the advantage that hyperspectral imaging is noninvasive 
and nonionizing [3], [5]. 

The main drawback of applications of techniques using 
hyperspectral imaging and machine learning is the enormous 
amount of data and processing required. This situation makes 
the execution in serial or sparsely parallelized computation 
models of the application, as is the case of microprocessors, 
very time-consuming and energy-intensive. However, the 
algorithms associated with the processing of these applications 
offer good possibilities of parallelism, the exploitation of which 
would greatly reduce the execution time, in addition to 
improving the ratio between time and energy consumption. For 
this purpose, it has been decided to implement a set of kernels 
to perform the hardware acceleration of the application. For 
this purpose, a GPU-based implementation has been used as a 
reference [5]. 

II. MATERIALS & METHODS 

A. HS skin cancer dataset 

The input data set for this application consists of three 
hyperspectral images (P15_C1000, "P15_C2000", 
"P60_C1003). These images have a spatial dimensionality of 
50 x 50. The spectral dimensionality consists of 125 bands. 
However, the first 4 bands and the last 5 bands are discarded 
because they do not include significant information. Within the 
image, each data is a 16-bit unsigned integer. The image 
content is serialized following the band sequential criterion 
(BSQ). Figure 1 presents these images as grayscale images. 
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Figure 1. Hyperspectral images [6] 

B. Target system 

The prototyping platform used for this application is the 
Xilinx ZCU102 board, which includes a Zynq UltraScale+ 
XCZU9EG-2FFVB1156 MPSoC device. The MPSoC is 
organized into two distinct systems, PS (Processing System), 
and PL (Programmable Logic), all included inside the same 
chip. The main components of the PS are the microprocessors, 
where the APU (Application Processing Unit), the RPU (Real-
Time Processing Unit), and the GPU (Graphics Processing 
Unit) are located. APU consists of four Cortex™-A53 MPCore 
processors, an L2 cache, and related circuits. PL is constituted 
by the FPGA fabrics, including hardware resources that are 
highly replicated, like as LUTs (Look-Up Table), BRAMs 
(Block RAM), and DSPs (Digital Signal Processors) [7], [8], 
[9]. 

III. ARCHITECTURE DESIGN 

The basic execution scheme of this application consists of a 
host, executed on a microprocessor system, which sequentially 
processes the computation flow with high data dependency and 
is supported by a set of kernels implemented in hardware, 
optimized to perform specific functions. The host manages data 
transfers and synchronization with hardware accelerators. 

The execution of the application has two stages. The first 
stage corresponds to pre-processing. This stage has three main 
steps: (1) remove extreme spectral bands; (2) filter the spectral 
signatures of the pixels; (3) normalize the spectral signatures of 
the pixel. 

Because hyperspectral cameras have poor sensitivity in 
extreme spectral bands, it is necessary to filter these bands. For 
this application, the first four and the last five spectral bands 
are discarded. It is possible to set other configurations during 
application construction. 

The next step is smooth filtering for each pixel in the 
image, which reduces the influence of spectral noise on the 
image data. The filtering algorithm processes each spectral 
band by averaging the pixel value in that band with a 
symmetric number of upper and lower bands lying next to that 
band. The total amount of data on average for each spectral 
band is typically five. However, another number can be set 
during compilation. Particular cases are those spectral bands 
that are close to the upper or lower limit of the spectrum 
considered and therefore do not have enough spectral bands on 
one of their sides. For such cases, less data is considered, but 
symmetry is maintained. 

For the filtering step, the host uses a dedicated kernel, 
implemented on the FPGA. This kernel uses the hardware 
implementation of the smooth filtering algorithm and saves the 

maximum, minimum, and scale (maximum-minimum) values 
found in the filtered pixels in the evaluation. This process is 
parallelized for a specific number of pixels, defined during 
kernel configuration. Figure 2 shows a simplified diagram of 
the operation of the kernel for filtering.  

Due to the operation of this first FPGA kernel, the image 
data must be sent to this kernel in a specific order. During this 
process, values of the rejected spectral bands are avoided, thus 
fulfilling the first step in the preprocessing. 

 

Figure 2. The basic architecture of the filtering kernel. 

Each data in the same batch belongs to the same spectral 
band. In addition, data in the same batch belongs to adjacent 
pixels if the spatial dimensionality of the image has been 
serialized. When there are not enough new pixels to fill a batch, 
padding values are included. Figure 3 shows how the image 
content is taken and transferred to the kernel for the case of a 
BSQ image and kernel processing parallelism of 6. This 
procedure is analogous to any other possible case. 

 

Figure 3. Ordering and transfer of the image content to the filtering kernel 

The normalization process consists of scaling the spectral 
signature of each pixel to values between 0 and 1. This 
homogenizes the amplitude in the spectral signature of the 
different pixels in the image. A new FPGA kernel is used to 
perform the normalization process. This kernel takes the data, 
maximum, and scale values of the filtered pixels calculated by 
the previous kernel. The normalization kernel must be 
parallelized for the same pixel sizes as the filtering kernel. In 
addition, the filtered pixels are normalized in the same order in 
which they were generated. 

The second step is to use k-means to distinguish regions in 
the skin tissue from the image according to their different states 
of affection. The number of regions is equal to the number of 
clusters in the k-means algorithm. According to [5], the best 
results are obtained for segmentation in 3 clusters. In this 
application, the same number of clusters is considered, but the 
application can be rebuilt for another number. The k-means 
algorithm is executed on FPGA as a kernel. This kernel has 4 
execution modes: (1) centroid initialization; (2) distance 
estimation; (3) centroid update; (4) centroid transfer.  

The first mode corresponds to the centroid initialization, 
where for each centroid a different pixel is selected as its initial 
spectral signature. These pixels are sent one by one to be 



loaded into the FPGA registers. These pixels are sent in 
batches of equal size so that one is introduced to the FPGA per 
kernel execution. This mode is started once per image for 
evaluation. 

In the second mode, the spectral signature of a target pixel 
is compared with the centroids to determine the new centroid to 
which the pixel will be reassigned. For this purpose, the pixel 
to be evaluated is sent in batches of the same size as in the first 
mode. Each batch in this mode is used only once per kernel 
execution. On each run, the squared difference between the 
pixel and a centroid is calculated for the spectral bands sent in 
the batch. The resulting values are put into an adder to get their 
sum "S" according to (1), where "px(i)" and "ctr(i)" are the 
spectral bands of the pixel and the centroid, respectively. 

S = ∑((px(i) – ctr(i))2) (1) 

The adder will follow a tree structure to simplify pipelining 
and reduce runtime. The calculated "S" means the distance 
between the pixel and the centroid for the spectral bands taken 
in this execution. This value is accumulated in a register. This 
register stores the "S" value for the spectral bands compared 
between the pixel and the centroid over several consecutive 
kernel executions. This process is repeated within the same 
executions for all centroids. In this way, after the execution for 
the last batch of pixels is finished, this register will store the 
distances between the pixel and each centroid. These distances 
are passed to a comparator. This comparator, following a tree 
structure, determines the centroid for which a minimum 
distance has been obtained and returns it to the host as the new 
centroid for the pixel. When this process is complete, this 
execution mode is reset and the kernel switches to centroid 
update mode. 

The third mode corresponds to the centroid update. In this 
mode, the centroids affected by the last pixel redistribution are 
updated. The spectral signature of the centroids consists of the 
average spectral signature of the pixels belonging to the 
centroids. This average is obtained by dividing the sum of the 
pixels in each spectral band by the number of pixels within the 
centroid. Therefore, updating the centroids means that in each 
spectral band, the pixel is subtracted from the sum of the old 
centroid and added to one of the new centroids before the 
averages are recalculated. These processes are parallelized to 
the same number of spectral bands as the previous two 
execution modes. Thus, each execution of this mode processes 
only one batch of pixel data of the same size as in the other 
modes. These batches are not stored in the FPGA from the 
previous runs for distance estimation. Therefore, they must be 
resent to the kernel from the host. 

If the pixel evaluated for the centroids update is not the last 
pixel of the image, the distance evaluation execution mode is 
set for the next pixel. On the other hand, if such a pixel is the 
last pixel of the image, the k-means termination criteria are 
evaluated. These termination criteria return true if less than a 
specified proportion of pixels from the image have been 
redistributed in the last k-means iteration, or if a specified 
number of k-means iterations has been exceeded. If it returns 
true, the k-means kernel is set to centroid transfer mode. 
Otherwise, the k-means algorithm is repeated for the entire 

image, and the distance estimation is restarted for the first 
pixel. 

In centroids transfer mode, the final centroids are 
transferred back to the host. This transfer is divided into 
batches of the same size as the previous execution modes. One 
batch is sent per kernel run. After the centroids transfer is 
complete, the kernel returns to the centroids initialization mode 
for possible new images. 

IV. APPLICATION DEVELOPMENT 

From the application development point of view, the Vitis 
IDE, a development platform provided by Xilinx, is used. The 
host is programmed using C/C++ and standard C/C++ libraries. 
On the other hand, the kernels are designed according to the 
HLS (High-Level Synthesis) methodology. This methodology 
allows the hardware architecture of the kernels to be described 
at the algorithmic level, deriving the optimized RTL 
architecture through the introduction of compilation directives 
and synthesis constraints. These directives are marked as 
"#pragma HLS" in the kernel source code [10], [11], [12]. 
Interaction and synchronization between the host and the 
kernels are programmed using OpenCL via C++ wrappers from 
the host. 

V. IMPLEMENTATION 

The Zynq Ultrascale+ MPSoC ZCU102 prototyping board 
was used for this research. 

The entire application is designed to be implemented on the 
MPSoC. Thus, the host is designed to run on the PS while the 
accelerator kernels are implemented on the PL.  

The platform uses AXI4 (Advanced eXtensible Interface) 
interfaces for communication between the host and the kernels. 
In this sense, four AXI4 interfaces are used for data transfers 
between the host and the filtering kernel, three for the 
normalization kernel, and two for the k-means kernel. 
However, all these ports are connected to the same PS-PL port 
called HP0 via a dedicated interconnect IP. An important 
aspect of the AXI4 interfaces is that they support a maximum 
data transfer width of 512 bits. Therefore, if a batch of data to 
be transferred on a line exceeds this length, the application is 
configured to transfer the data in as many transfers as 
necessary in burst mode [13]. Figure 4 presents the basic 
schematic of the application.  

This application can be adapted to other SoCs and MPSoCs 
if they contain at least a microprocessor, an FPGA, and 
sufficient AXI4 interfaces. However, the parallel processing of 
the core must be adapted to the availability of FPGA resources. 
The application is loaded into the MPSoC via the SD card slot 
on the prototyping board. It must contain the executable file of 
the application to be run on the host and the binary file to 
configure the FPGA. In addition to these files, some additional 
files are needed to boot the board and to implement a Linux 
operating system and file system to support the application. 
The interaction with the system is done through a PC terminal 
connected to the MPSoC via Ethernet. For this interaction, an 
IP address for the prototyping board must be set and known in 
advance. 



 

Figure 4. Basic diagram for the platform 

VI. DESIGN VALIDATION 

Following the HLS methodology, the design was validated 
using both software and hardware emulations. Both emulations 
are run by the QEMU (Quick Emulator) emulator on a 
computer running Linux OS. This emulator pretends to be the 
target APU for the host in both emulations. However, the 
emulations differ for the FPGA kernels [14]. 

Software emulation interprets FPGA kernels to run on the 
APU as host code. This emulation option is compiled and 
executed first because it is faster. However, software emulation 
can only verify that the kernels are algorithmically correct. As 
a result, aspects such as FPGA utilization and timing are not 
considered for each kernel. Also, this type of emulation does 
not take into account the parallelism in kernel processing that 
occurs in the FPGA implementation. 

In hardware emulation, kernels are interpreted to be 
implemented and executed on the target FPGA. This change 
makes this emulation choice more time-consuming than 
software emulation. However, it allows further validation of 
the FPGA kernel by checking the feasibility and performance 
of its implementation. In addition, running this emulation 
makes it possible to validate that any problem in the FPGA 
implementation does not change the correctness of the output 
returned by the kernels. These features make the hardware 
emulation compile and run after the software emulation, as a 
second level to validate the kernels. [14]. 

VII. FINAL APPLICATION 

This application is intended to be invoked from the shell 
command window. The main input data is the hyperspectral 
image to be evaluated, specified as a binary file. Optionally, the 
user can specify the dimensions of the hyperspectral image 
(length, width, and spectrum) and the serialization criterion 
followed by the image data in the binary file. These features 
can be specified directly in the application call, or indirectly via 
a text file. If not specified, default values are used. 

The application can adapt to hyperspectral images of 
different dimensionalities. Thus, the application can be 

configured to work with images no larger than 2^31-1 bytes. In 
addition, the dimensions of the evaluated images can change 
from one run to another without rebuilding the application, if 
they do not exceed the limits configured at compile time about 
the maximum number of pixels and spectral bands allowed. 
The serialization of the input image data can be Bands 
Interleaved by Pixel (BIP), Bands Interleaved by Line (BIL), or 
Band Sequential Sequential [1].  

This application can adapt to any of these without 
rebuilding. Another configurable aspect is the data type of each 
datum from the hyperspectral input image content. On this 
topic, the application can only work with unsigned integers or 
fixed-point data. However, the application can be configured 
during compilation to work with data of 1, 2, 4, or 8 bytes. 

VIII. PERFORMANCE RESULTS 

This section discusses the performance of the application. 
This performance is measured in terms of FPGA resource 
utilization, time, and power. Finally, the clustering results of 
the kernel are evaluated. 

A. FPGA utilization 

According to the results of the design, the FPGA kernels 
can operate at a clock speed of up to 150 MHz. The utilization 
of the FPGA by the kernels is shown in TABLE I. For this 
evaluation, the kernels are considered to have a parallelism of 
16 data for the preprocessing kernels and 8 data for the k-
means kernel. The Platform row refers to the FPGA resources 
required by the entire system. The HP0 row refers to the 
resources involved used to switch the HP0 port in the PS to 
each data port in each FPGA kernel. The other row refers to 
resources used for additional purposes, such as switching 
between host and kernels and resetting the kernels. This usage 
is distributed throughout the FPGA as shown in Figure 5, 
where each kernel and HP0 is identified by the colors shown 
there. 

TABLE I. UTILIZATION OF FPGA RESOURCES. 

IP 
 FPGA resources 

 FF LUT DSP BRAM 

filtering  22342 16887 0 16.5 

normalization  32304 26294 0 12.5 

k-means  29391 30271 25 53 

HP0  21986 22907 0 136.5 

Others  1947 1148 0 0 

Platform  107970 105109 25 219 

 

As shown in TABLE I, the amounts of FPGA resources 
utilized for switching are quite significant. However, they are 
mainly targeted to switch data frame transfers. Besides, the 
utilization of every resource in “top_kmeans” is greater or very 
similar to that obtained in the other kernels. This occurs even 
though the kernel’s parallelization is half of the other kernels. 

In the case of flip-flops, it must be emphasized that 
“top_kmeans” requires more complex coordination among its 
iterations than others. This is because it must coordinate the 4 
execution modes and the access to the information about 



centroids stored within. Moreover, the “top_kmeans” utilizes 
more LUTs as it involves more and more complex operations. 

 

Figure 5. FPGA utilization 

Besides, the special complexity of some of these operations 
leads to the use of DSPs in “top_kmeans” for multiplication, 
while its usage is inexistent in the other kernels. Also, the 
utilization of BRAMs in “top_kmeans” is much higher than in 
the other kernels due to the need to store information about the 
centroids. It must be remembered that this information implies 
the entire spectral signature of every centroid and the 
summation of pixels for every spectral band at each centroid. 

B. Kernel’s time performance 

Time performance results are shown in TABLE II for every 
kernel, being quantified in kernel clock cycles. The term 
“Initiation Interval” means the minimum elapsed time between 
two 2 consecutive executions of the kernel thanks to pipelining. 

TABLE II. TIME PERFORMANCE BY EVERY KERNEL. 

Kernel function 
Time feature (FPGA clock cycles) 

Initiation Interval Latency 

filtering 2 239 

normalization 1 250 

k-means 40 151 

 

The most significant difference between the kernels is 
found in the initiation interval. In that way, while this value is 
minimal for the filtering and normalization kernels, it is much 
greater for the k-means kernel. This last situation occurs 
because of the mutual data dependence between the execution 
modes for the distance assessment and the centroids update. 
More specifically, while the distance assessment needs the last 
centroids update finishes to know the spectral signatures of the 
centroids, the centroids update must wait for the last distance 
assessment to know the new centroid for reallocating the pixel. 

C. Application time performance 

Employing the HS dataset, the average runtime on one 
iteration has been measured for every kernel. These runtimes 
include the kernels’ execution, but also the host’s execution 
required. Also, they consider the synchronization and 
parallelism between the host and kernels. Besides, the runtime 
has been measured for the entire application, except for the 
display of the results. These results were obtained for software 
emulation (row “sw_emu”) and actual execution on the 
MPSoC (row “hw”).  

Moreover, the “GPU 1” and “GPU 2” rows are results for 
the GPU-accelerated similar application from [5], for which 2 
implementation options are assessed. This GPU application 
also includes Spectral Angle Mapper (SAM) and Support 
Vector Machines (SVM) as part of its running. “GPU 1” refers 
to the NVIDIA RTX 2080 GPU implementation in [5], while 
“GPU 2” means the NVIDIA Tesla K40 GPU. 

TABLE III. RUNTIME FOR EVERY KERNEL AND THE WHOLE APPLICATION 

Execution 

Part of the application 

multFilter normalizers top_kmeans Total 

sw_emu 217 ms 221 ms 181 ms 48886 s 

hw 95.56 μs 97.3 μs 90.4 μs 22.77 s 

GPU 1    0.8 s 

GPU 2    0.33 s 

 

If results from “hw” are compared to those from 
“sw_emu”, FPGA acceleration is concluded to relevantly 
enhance the application’s throughput. In addition, both 
“multFilter” and “normalizers” leverage parallelism in terms of 
throughput with the same effectiveness. This last happening 
means that making kernels “multFilter” and “normalizers” can 
have different parallelism capabilities is useless. 

D. Energy performance 

The estimated power needed by the application’s running 
goes around 6.16 W. This consumption is mostly dynamic 
power (88%), whereas static power is the minor part (12%). 
The static power is mainly consumed by the FPGA (86%), due 
to the high number of components and configuration that its 
utilization requires. The dynamic power is majorly consumed 
by the host’s running (48%) but stays close to FPGA’s running 
(43%). The remaining 9% is employed in clock signals. 

By this power data, it is seen that FPGA kernels involve a 
part of the power consumption in the application which is more 
meaningless than the part of the computational load they 
process. In this way, FPGA acceleration is concluded to help in 
saving energy, both by reducing runtime and power. 

E. Qualitative results 

According to the results, the segmentations made by the 
application fit well to the spread of the skin cancer lesion. This 
happening can be seen in Figure 6, where images are also 



represented in grayscale to ease the comparison. Besides, 
results obtained by a CPU function written in Matlab that 
follows a similar algorithm are also shown. 
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Figure 6. Image segmentation results 

In the image “P60_C1003”, the clustering from the 
application differs from Matlab. According to the grayscale 
image, this difference is because the affection is more blurred 
than in the other images. Besides, pixels from the lower-right 
corner of “P60_C1003” are misclassified. It happens for the 
influence of “dead pixels”, consisting of a flaw in the 
hyperspectral camera. 

IX. CONCLUSIONS AND FUTURE WORK 

The final application provides good aid to dermatologists in 
detecting skin cancer. This quality is seen in the segmentation 
images, which fit quite well with the spread of the lesion seen 
in the grayscale images. Moreover, using FPGA acceleration 
helps to shorten runtime and energy consumption if compared 
to not hardware accelerated choices. Besides, this application 
has runtime and compile-time adaptation to some aspects of the 
input hyperspectral image. This guarantees the application’s 
utility under many work circumstances. 

Regarding the FPGA kernels, compile-time configuration 
options have been enabled to ease the application’s 
adaptability. The most characteristic and common option to 
configure for these kernels is their parallelism, by which they 
can be adapted to the availability of FPGA resources. Also, 
these kernels have been designed to have as much pipelining 
capability as possible due to data dependencies among their 
algorithm. 

Some future works for this project may be: (1) exploring 
dynamic FPGA reconfiguration to make every FPGA kernel 
have more available FPGA resources; (2) implementing 

labeling of every cluster by SAM (Spectral Angle Mapper); (3) 
changing k-means stage to have a better pipelining. 
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