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Abstract—Hyperspectral linear unmixing is a procedure of 
decomposing the measured spectrum of an observed scene into a 
collection of spectral signatures that defines different materials 
and their corresponding proportions (or abundances) on each 
pixel of the scene. This procedure consists on three major 
processes, namely dimension reduction (number of endmembers 
estimation), endmember extraction, and the abundances 
estimation. There exist various algorithms for each one of these 
processes. In this research is proposed a unique algorithm that 
makes all the hyperspectral linear unmixing. 
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I.  INTRODUCTION 

In the seventies there were multispectral sensors sensitive 
to a few dozens of different wavelengths, allowing developing 
a new paradigm in the material detection and classification. 

This classification is based on the fact that all materials 
reflect, absorb, and emit electromagnetic energy, at specific 
wavelengths, in distinctive patterns related to their molecular 
composition [1]. This response dependent on the wavelength is 
denominated spectral signature, existing a unique spectral 
signature for each material. 

At the beginning of the eighties, the Jet Propulsion 
Laboratory (JPL) of the National Aeronautics and Space 
Administration (NASA) developed the Airborne Visible-Infra 
Red Imaging Spectrometer (AVIRIS) sensor, sensitive to 224 
contiguous different wavelengths, from 400 to 2500 
nanometers. Furthermore, this sensor allowed overcoming the 
difficulties that appears when boarding sensors on mobile 
platforms [2], so it extended the frontier of possibilities offered 
by this technique. 

Remote sensing is one of the possibilities exploited by JPL 
through AVIRIS sensor. AVIRIS has been flown on four 
aircraft platforms that fly at approximately 20.000 m above sea 
level, characterizing a great amount of planet Earth areas. 
Another remote sensing examples are the two orbiting sensors: 
Hyperion on the Earth Observing-1 satellite from NASA and 
CHRIS on the PROBA-1 satellite from European Space 
Agency (ESA)[3]. In the next three years there will be three 
more sensors: Prisma from the Italian Space Agency (ASI) in 

2013 [4], EnMAP from the German Aerospace Center (DLR) 
and from the German Research Centre for Geosciences (GFZ) 
in 2015 [5] and also HyspIRI from NASA in 2015[6]. 

The information collected by sensors is stored in what have 
been called hyperspectral cubes. Thus, hyperspectral images 
are modeled as three-dimensional matrices: one dimension 
reflects the spectral information (wavelengths) and two 
dimensions reflect the spatial information. 

II. BACKGROUND 

The spatial resolution, particularly in remote sensing 
applications, is usually smaller than the size of the objects. This 
is the reason why there are pixels whose spectral information is 
a mix of the spectral signatures of different materials. 

There are many theoretical models that attempt to explain 
how the spectral signatures are combined to yield the 
information contained in the image, most of them based on a 
linear mixing model such that each pixel can be modeled as a 
linear combination of a finite number of spectral signatures. 
These signatures are called endmembers [7]. 

Hyperspectral unmixing, a procedure of decomposing the 
measured spectrum of an observed scene into a collection of 
endmembers and their corresponding proportions (or 
abundances), is essential in identifying individual materials 
from a hyperspectral scene. 

In hyperspectral unmixing, basically there are three major 
processes, namely dimension reduction (number of 
endmembers estimation), endmember extraction, and the 
abundances estimation. Dimension reduction is useful for 
complexity reduction of the subsequent endmember extraction 
and abundance estimation. Principal component analysis 
(PCA) [8] and maximum noise fraction (MNF) [9] are typical 
dimension reduction algorithms. However, accurate estimation 
of the number of dimensions that can truly represent the data 
space still remains a challenging task, for which some model 
order estimation methods have been developed, for instance, 
virtual dimensionality (VD) [10] and hyperspectral signal 
subspace identification by minimum error (HySime) [11]. 
Endmember extraction is to determine the endmembers that 
contribute to the measured spectra. A number of endmember 
extraction algorithms have been reported, e.g., pixel purity 



index (PPI) [12], N-finder (N-FINDR) [13], [14], vertex 
component analysis (VCA) [15], and convex cone analysis 
(CCA) [16]. Finally, the inversion process is to estimate the 
abundances associated with the endmember estimates. For 
instance, fully constrained least squares (FCLS) [17] is an 
effective algorithm for estimating the abundances. 

III.  OBJECTIVES 

The main objective of the research is the development of an 
algorithm as a proof of concept, consisting on trying to merge 
the estimation of the number of endmembers, the endmembers 
extraction and abundances estimation, forming the entire linear 
unmixing chain in a 1-step manner. The algorithm is 
implemented in Matlab and is accompanied by a set of tests 
that provide the results which demonstrate its feasibility. 

IV.  HYPHOTHESIS 

Assuming that the set of endmembers are included in the 
image as pure pixels, the problem is defined as finding out 
which combination of p pixels of the image forms the              
N-dimensional simplex that contains the rest of pixels in it, 
without knowing p. Moreover, the problem also includes the 
determination of the abundance of each endmembers in each 
pixel of the image. 

For this purpose, a set of n pixels (n ≤ p) of the image are 
initially selected, assuming them as endmembers, i.e., vertices 
of an N-dimensional simplex. By estimating the abundances of 
these endmembers in the rest of pixels by Least Squares 
method, you can determine which pixels are inside and outside 
the simplex. 

Thus, the proposed resolution consists on replacing and 
adding iteratively the pixels that form the vertices of the 
simplex, in order to find the combination that includes all the 
pixels inside. This approach is similar to N-FINDR but 
replacing the metric, i.e., volume by number of pixels inside 
the simplex, although N-FINDR is not able to increase the 
number of vertices of the simplex. 

The expected advantage consists on directing the algorithm 
towards the best candidates to replace the pixels that form the 
vertices of the simplex, by considering the value of the 
estimated abundances at each iteration, since the more negative 
abundance, the better predisposition to be endmember. 
Furthermore, in this way, pixels which have already been in the 
interior of one of the successive constructed simplexs during 
the algorithm can be discarded from search, also allowing 
increasing the number of endmembers, given the necessity of 
including all pixels inside the final simplex. 

Thus, the algorithm will be able to calculate the number of 
endmembers, the endmembers and abundances in a unified 1-
step algorithm, feeding back the information acquired in the 
calculation of the abundances. In this manner it is expected to 
mitigate the influence of errors propagation on subsequent 
stages. It’s important to realize that this approach is just based 
on spectral information, not taken into account spatial 
information. 

On the other hand, we know that noise distorts the original 
pixel position in the N-dimensional space, so also it should be 
necessary to examine how and how much noise affects the 
approach shown above, also trying to find solutions that allow 
the algorithm to be robust against noise. 

V. EXPERIMENTS 

On one hand, it has been defined a synthetic imaging 
library in order to make the experiments. These images are 
defined by the number of endmembers (3-21) and by the Signal 
Noise Ratio (SNR) (40dB, 60dB, 80dB and ∞). On the other 
hand, it has been defined what have been called a reference 
chain, that consists of 3 algorithms (VD - VCA - FCLS). 

VI.  RESULTS 

In this section is shown the comparative results obtained for 
images of size 100x100 pixels, given a set of parameters fixed 
in the developed algorithm, even when its optimality is not yet 
studied. 

A. Number of Endmembers Estimation 

 

 

Figure 1. Estimation of # endmembers 

.The magenta dashed line shows the line of 45° where the 
results should be. It is shown how the proposed algorithm 
without noise makes a perfect estimation of the number of 
endmembers. However, when noise and the real number of 
endmembers increase, the algorithm is not able to make a good 
estimation. Moreover, the reference chain is never able to find 
the number of real endmembers, always subestimating 1 
endmember, except for SNR 40dB, where overestimate. 

B. Endmembers Extraction 

In Figure 2 is shown the spectral angle between n real 
endmembers and n extracted endmembers, where n is the 
minimum between the real number of endmembers and the 
number of estimated endmembers. 



 

Figure 2.  Mean spectral angle 

It is shown how the proposed algorithm is very sensitive to 
noise showing a worse performance when the SNR is 40dB 
and an excellent performance when there is no noise in the 
image obtaining angles in the order of 10-6. Moreover, the 
spectral angles obtained by the reference chain appear 
insensitive to noise, except in the cases where SNR is 40dB 
due to the overestimation commented above. 

C. Abundances Estimation 

In Figure 3 is shown the Abundance RMSE for the n 
endmembers shown above. 

 

Figure 3.  Abundances RMSE 

In the same manner, the proposed algorithm shows an 
extraordinary behaviour in scenarios without noise. However, 
when SNR decreases, RMSE increases, and also RMSE shows 
a soft tendency to increase while the real number of 
endmembers increases, due to a worse estimation of the 
number of endmembers. 

D. Execution Time 

 

Figure 4.  Execution time 

As shown in Figure 4, the proposed algorithm is faster than 
the reference chain for this image size (100x100). The great 
amount of time that the reference chain exhibits when SNR is 
equal to 40dB is due to an overestimate of the number of 
endmembers. 

VII.  CONCLUSIONS 

Given the results shown above, it can be considered to have 
produced sufficient evidence to conclude that the hypothesis is 
proved, i.e., the proposed method is functional, showing 
comparable behavior to a contrasted linear unmixing chain, 
even when the parameters optimality that defines the algorithm 
have not been well studied yet. 
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