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Abstract—Hyperspectral linear unmixing is a procedure of
decomposing the measured spectrum of an observecege into a
collection of spectral signatures that defines diffrent materials
and their corresponding proportions (or abundances)on each
pixel of the scene. This procedure consists on thremajor

processes, namely dimension reduction (number of dmembers
estimation), endmember extraction, and the abundares
estimation. There exist various algorithms for eacltone of these
processes. In this research is proposed a uniquegatithm that

makes all the hyperspectral linear unmixing.
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. INTRODUCTION

In the seventies there were multispectral sensamsitive
to a few dozens of different wavelengths, allowitgyeloping
a new paradigm in the material detection and dlaaton.

This classification is based on the fact that adtenals
reflect, absorb, and emit electromagnetic energyspacific
wavelengths, in distinctive patterns related tarthaolecular
composition [1]. This response dependent on thecleagth is
denominated spectral signature, existing a unigpectsal
signature for each material.

2013 [4], EnMAP from the German Aerospace CentdrRPD
and from the German Research Centre for GeoscigEies)
in 2015 [5] and also HyspIRI from NASA in 2015[6].

The information collected by sensors is stored limwhave
been called hyperspectral cubes. Thus, hyperspentemes
are modeled as three-dimensional matrices: one rdioe
reflects the spectral information (wavelengths) atwdo
dimensions reflect the spatial information.

1. BACKGROUND

The spatial resolution, particularly in remote segs
applications, is usually smaller than the sizehefabjects. This
is the reason why there are pixels whose spedfi@mation is
a mix of the spectral signatures of different niatsr

There are many theoretical models that attempixpdaa
how the spectral signatures are combined to yidld t
information contained in the image, most of thersdabon a
linear mixing model such that each pixel can be efetl as a
linear combination of a finite number of spectragnstures.
These signatures are called endmembers [7].

Hyperspectral unmixing, a procedure of decomposireg
measured spectrum of an observed scene into actimtieof

endmembers and their corresponding proportions (or

At the beginning of the eighties, the Jet Propuisio ghyndances), is essential in identifying individuahterials

Laboratory (JPL) of the National Aeronautics anda&p
Administration (NASA) developed the Airborne Visbinfra
Red Imaging Spectrometer (AVIRIS) sensor, sensitiv@24
contiguous different wavelengths, from 400
nanometers. Furthermore, this sensor allowed owgrngpthe
difficulties that appears when boarding sensors nuobile
platforms [2], so it extended the frontier of padgies offered
by this technique.

Remote sensing is one of the possibilities expioitg JPL
through AVIRIS sensor. AVIRIS has been flown on rfou
aircraft platforms that fly at approximately 20.0@0above sea
level, characterizing a great amount of planet tEateas.
Another remote sensing examples are the two ogogiénsors:
Hyperion on the Earth Observing-1 satellite from $bdand

to 2500Processes,

from a hyperspectral scene.

In hyperspectral unmixing, basically there are ¢hneajor
namely dimension reduction (number of
endmembers estimation), endmember extraction, dred t
abundances estimation. Dimension reduction is uskfu
complexity reduction of the subsequent endmembg&aetion
and abundance estimation. Principal component sisaly
(PCA) [8] and maximum noise fraction (MNF) [9] axgpical
dimension reduction algorithms. However, accurataration

of the number of dimensions that can truly represies data
space still remains a challenging task, for whioms model
order estimation methods have been developed nfdarice,
virtual dimensionality (VD) [10] and hyperspectraignal
subspace identification by minimum error (HySime)l][

CHRIS on the PROBA-1 satellite from European Spacgnpdmember extraction is to determine the endmemthets

Agency (ESA)[3]. In the next three years there Will three
more sensordrisma from the Italian Space Agency (ASI) in

contribute to the measured spectra. A number ofmenaber
extraction algorithms have been reported, e.g.elppurity



index (PPI) [12], N-finder (N-FINDR) [13], [14], v&X

component analysis (VCA) [15], and convex cone ysisl
(CCA) [16]. Finally, the inversion process is tdimsite the
abundances associated with the endmember estimates.
instance, fully constrained least squares (FCLS) [i$ an

effective algorithm for estimating the abundances.

Ill.  OBJECTIVES

The main objective of the research is the developrotan
algorithm as a proof of concept, consisting onngyio merge
the estimation of the number of endmembers, thenentbers
extraction and abundances estimation, forming thieeclinear

On the other hand, we know that noise distortsotiginal
pixel position in the N-dimensional space, so d@should be
necessary to examine how and how much noise affbets
approach shown above, also trying to find solutithad allow
the algorithm to be robust against noise.

V. EXPERIMENTS

On one hand, it has been defined a synthetic ingagin
library in order to make the experiments. Thesegesaare
defined by the number of endmembers (3-21) andhéysignal
Noise Ratio (SNR) (40dB, 60dB, 80dB and. On the other
hand, it has been defined what have been callezfesence

unmixing chain in a 1-step manner. The algorithm ischain, that consists of 3 algorithms (VD - VCA - [F%).
implemented inMatlab and is accompanied by a set of tests

that provide the results which demonstrate itsifdéy.

IV. HYPHOTHESIS

Assuming that the set of endmembers are includettien
image as pure pixels, the problem is defined agdirfi out
which combination ofp pixels of the image forms the
N-dimensional simplex that contains the rest ofefsixin it,

without knowingp. Moreover, the problem also includes the

determination of the abundance of each endmembeesdh
pixel of the image.

For this purpose, a set ofpixels @ < p) of the image are
initially selected, assuming them as endmembegs,\ertices
of an N-dimensional simplex. By estimating the atantes of
these endmembers in the rest of pixels by Leastarggu
method, you can determine which pixels are insitte gutside
the simplex.

Thus, the proposed resolution consists on replaeimg
adding iteratively the pixels that form the versicef the
simplex, in order to find the combination that umbés all the
pixels inside. This approach is similar to N-FINDiBut
replacing the metric, i.e., volume by number ofgfsxinside
the simplex, although N-FINDR is not able to inGeahe
number of vertices of the simplex.

The expected advantage consists on directing guitdm
towards the best candidates to replace the pikalsform the
vertices of the simplex, by considering the value tloe
estimated abundances at each iteration, since ¢the megative

VI.  RESULTS

In this section is shown the comparative resultaiobd for
images of size 100x100 pixels, given a set of patars fixed
in the developed algorithm, even when its optingatnot yet
studied.

A. Number of Endmembers Estimation
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Figure 1. Estimation of # endmembers

abundance, the better predispositon to be endmembelhe® magenta dashed line shows the line of 45° evtiee

Furthermore, in this way, pixels which have alrebdgn in the
interior of one of the successive constructed xplduring
the algorithm can be discarded from search, altmwilg

increasing the number of endmembers, given thessigeof
including all pixels inside the final simplex.

Thus, the algorithm will be able to calculate thenber of
endmembers, the endmembers and abundances inied utif
step algorithm, feeding back the information acegliin the
calculation of the abundances. In this manner éxisected to
mitigate the influence of errors propagation on ssguent
stages. It's important to realize that this apphocjust based
on spectral information, not taken into account tigba
information.

results should be. It is shown how the proposedrilgn
without noise makes a perfect estimation of the lmemof
endmembers. However, when noise and the real nuamiber
endmembers increase, the algorithm is not ableatcera good
estimation. Moreover, the reference chain is nate to find
the number of real endmembers, always subestimating
endmember, except for SNR 40dB, where overestimate.

B. Endmembers Extraction

In Figure 2 is shown the spectral angle betweereal
endmembers anah extracted endmembers, whemneis the
minimum between the real number of endmembers had t
number of estimated endmembers.
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Figure 2. Mean spectral angle

It is shown how the proposed algorithm is very g@sto
noise showing a worse performance when the SNRO@B4
and an excellent performance when there is no rioigbe
image obtaining angles in the order of®1MMoreover, the
spectral angles obtained by the reference chaineaapp
insensitive to noise, except in the cases where &N\NFOdB
due to the overestimation commented above.

C. Abundances Estimation

In Figure 3 is shown the Abundance RMSE
endmembers shown above.

Abundancies RMSE
Proposed algarithm

for the

Abundancies RMSE
Reference LSU chain

RMSE
RMSE

20

10 15
# endmembers

5 10
# endmembers

15 20 5

Figure 3. Abundances RMSE

In the same manner, the proposed algorithm shows
extraordinary behaviour in scenarios without noldewever,
when SNR decreases, RMSE increases, and also RMSE& s

endmembers increases, due to a worse estimatiotheof
number of endmembers.

W

a soft tendency to increase while the real numbér o

D. Execution Time
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Figure 4. Execution time

As shown in Figure 4, the proposed algorithm isefahan
the reference chain for this image size (100x10® great
amount of time that the reference chain exhibitewBNR is
equal to 40dB is due to an overestimate of the mundf
endmembers.

VII.

Given the results shown above, it can be considerbdve
produced sufficient evidence to conclude that tyothesis is
proved, i.e., the proposed method is functionalpwshg
comparable behavior to a contrasted linear unmixihgin,
even when the parameters optimality that definesatborithm
have not been well studied yet.

CONCLUSIONS
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