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ABSTRACT 

 

This paper presents a new algorithm to perform the endmember extraction 
and their abundances calculation. It also presents a new method to estimate 

the number of endmembers and make the dimensional reduction based on 

the Implicitly Restarted Arnoldi’s method. 

 

Goods results have been obtained compared with some well-known 

algorithm such as the Vertex Component Analysis (VCA) and the NFinder 
for the endmembers extraction, Fully Constrained Linear Spectral 

Unmixing (FCLSU) for the abundances calculation and Virtual 

dimensionality (VD) and HySIME for the estimation of the number of 
endmembers. Moreover, this is achieved with independence of the amount 

of noise and/or the number of endmembers of the hyperspectral image 

under processing. 
 

1. INTRODUCTION 

 
Linear unmixing has rapidly become one of the most popular techniques in 

order to determine the content of a remotely sensed hyperspectral image. It 

is based on the idea that each captured pixel r = [r1, r2, … rNb]T in a 
hyperspectral image composed by Nb spectral bands, can be represented as 

a linear combination of a finite set of spectrally pure constituent spectra or 

endmembers, ei, weighted by an abundance factor, ai, that establishes the 

proportion of each endmember in the pixel under inspection, as follows: 

 

𝒓 =  𝒂𝒊 × 𝒆𝒊 + 𝒏

𝒑

𝒊=𝟏

 (1) 

 
Where p is the total number of endmembers of the image and n represents a 

source of additive noise. Two physical constraints can be imposed into this 

linear model, namely the abundance non-negativity constraint (ANC), i.e., 
ai> 0 for all 1 <i<p; and the abundance sum-to-one constraint (ASC), 

i.e.,  𝒂𝒊
𝒑
𝒊=𝟏 =1. At this point it is worth to mention that while partially 

constrained solutions imposing only the ANC have found success in the 

literature, the ASC is however, prone to strong criticisms because of the 
strong signature variability that normally characterize remotely sensed 

hyperspectral images. In addition, this linear mixture model assumes that 

secondary reflections and scattering effects can be neglected from the data 
collection procedure, and hence, the measured spectra can be expressed as a 

linear combination of the spectral signatures of materials present in the 

mixed pixel. If the impact of the secondary reflections or the scattering 
effects is relevant, more complex non-linear models can be applied but they 

normally demand a priori information about the geometry and physical 

properties of the observed objects, which results in an increase of the 
computational complexity of the unmixing process.  

 

Linear unmixing process is typically divided in four stages. The first stage 
is a dimensionality reduction of the hyperespectral image. For this stage 

some well-known algorithm are the Principal Components Analysis (PCA) 

and the Maximun Noise Fraction (MNF). The second stage is the 
estimation the numbers of the endmembers. For this stage the most popular 

algorithms are the VD and HySIME. The third stage is the endmembers 

extraction. Some of the most popular algorithms for this stage are the VCA 
and NFinder. Once the endmembers have been extracted, the last stage is to 

calculate their abundance in each pixel of the image. For this stage the most 

used algorithm is the FCLSU. 

 

Each of these algorithms has high operational complexity, what makes 

difficult their hardware implementation for real time processing. Moreover, 
these algorithms use to have little errors in their results, which makes the 

whole linear unmixing process to present a bigger error. 

 

This paper presents some new techniques to perform the whole linear 

unmixing process with a smaller error and less operational complexity, in 

order to make it viable for real time processing of hyperespectral images. 
 

2. ALGORITHM FOR ENDMEMBERS EXTRACTION AND 

ABUNDACES CALCULATION 

 

This section aims to describe the proposed algorithm to extract the 

endmembers present in a hyperspectral image and calculate their 
abundances. 

 

The algorithm takes as input parameters the number of endmembers to be 
extracted, p, and the dimensional reduced image, of p bands. The algorithm 

provides the endmembers and their corresponding abundances. The 

extracted endmembers need not necessarily to correspond with pixels in the 
image. Calculated abundances accomplish non-negativity constraint (ANC) 

and sum-to-one constraint (ASC). These restrictions are applied to every 

iteration performed by the algorithm for calculating the abundances. To do 

this, first the negative terms of abundances vectors are replaced by zeros, 

and then each of these vectors are divided by its norm.   

 
The endmembers are initialized as the identity matrix. Abundances matrix 

is initialized as the dimensional reduced image, of p bands, applying the 
ANC and ASC restrictions to it. The algorithm iteratively refines these 

endmembers and abundances. It refines five times the abundances for each 

time it refines the endmembers. This sequence is repeated as much times as 
the iteration limit indicate.  

 

Abundances refinement is performed maintaining fixed endmembers and 
minimizing function 2, employing the method of gradient descent 

independently to each of the pixels. The factor Y takes a high initial value, 

2, and decreases linearly with the iterations to a reduced final value, 0.005. 
Endmembers refinement is performed by holding fixed the abundances and 

minimizing the function 3, employing the method of gradient descent 

independently for each of the bands. 

 

𝑭𝒑𝒊𝒙𝒆𝒍𝒋 =  𝑰𝑴𝑮𝒓𝒆𝒅𝒋
− 𝒆𝒓𝒆𝒅 · 𝒂𝒋 

𝟐

+ 𝒀 ·  𝟏 − 𝒂𝒋 ·  𝒂𝒋
𝒕  (2) 

 

𝑭𝒃𝒂𝒏𝒅𝒊
=  𝑰𝑴𝑮𝒓𝒆𝒅𝒊

− 𝒆𝒓𝒆𝒅𝒊
· 𝒂 

𝟐
 (3) 

 
It is noteworthy that the decent gradient method calculates separately each 

component of each pixel or band to minimize these functions, so the 

algorithm is highly parallelizable. Moreover, the operations performed are 
just products and sums. 

 

3. ALGORITHM FOR DIMENSIONAL REDUCTION AND 

ESTIMATING THE NUMBER OF ENDMEMBERS 

 

This section aims to describe the proposed algorithm for performing 
dimensional reduction of the image and the estimated number of 



endmembers to be extracted. The proposed algorithm for this task is based 

on the Implicitly Restarted Arnoldi’s method for calculating eigenvalues 
and eigenvectors. 

 

It was noted that if this method is applied to the correlation matrix shown in 
function 4, and a number of eigenvalues and eigenvectors greater than the 

number of endmembers present in the image is calculated, the vector with 

the Ritz values returned by the algorithm has the same number of zeros that 
the number of endmembers of the image. From here, eigenvectors and 

eigenvalues which have Ritz values nulls are selected. The dimensional 

reduction is done with these eigenvectors and eigenvalues as shown in 
expression 7. The function 8 shows how to undo the dimensional reduction. 

 

𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝑴𝒂𝒕𝒓𝒊𝒙 = 𝑰𝑴𝑮 · 𝑰𝑴𝑮𝒕 𝑵  (4) 

 

𝒎𝒂𝒕𝑷 = 𝑫−𝟏/𝟐 · 𝑽,   𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 𝒑 · 𝒏𝒃 (5) 

 

𝒎𝒂𝒕𝑽 = 𝑽𝒊𝒏𝒗 · 𝑫−𝟏/𝟐,   𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 𝒏𝒃 · 𝒑 (6) 

 

𝑰𝑴𝑮𝒓𝒆𝒅 = 𝒎𝒂𝒕𝑷 · 𝑰𝑴𝑮,   𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 𝒑 · 𝑵 (7) 

 

𝒆 = 𝒎𝒂𝒕𝑼 · 𝒆𝒓𝒆𝒅 (8) 

 
Where N is the number of pixels of the image, D is a pxp diagonal matrix 

whose diagonal terms are the p eigenvalues obtained, V is a pxnb matrix 

with the eigenvectors in rows, and Vinv is the pseudoinverse of matrix V, of 
dimension nbxp. 

 

4. RESULTS 

 

4.1. Results for estimating the number of endmembers. 

 

4.1.1. Results with synthetic images. 

 

Simulations were performed varying the dimension, the noise and the 
number of endmembers of the images. 20 simulations were conducted for 

each image size and each noise, varying randomly the number of 

endmembers between 10 and 20 in each case. For each image we estimated 
the number of endmembers with the proposed algorithm and with the 

HySIME and VD algorithms. In the VD algorithm we use 10-5 as value of 

false alarm. The average values of the results are found in Table 4.1. 
 

Image Percentage of correct Average error 

Dim SNR TFM HS VD TFM HS VD 

150x150 
40 100 75 5 0 0.25 16.5 

20 5 0 0 1.75 5.6 207.1 

300x300 
40 100 85 0 0 0.15 209.5 

20 35 0 0 0.7 4.7 208.5 

Table 4.1 Number of endmembers. Synthetic Images. 

 

4.1.2. Results with real images. 

 

Simulations were performed with real images. The results are shown in 
Table 4.2. 

 

Cup. 250x191x188 SNR 45 I.P. 145x145x200 SNR 35 

IMG TFM HS VD (10-1) VD (10-3) VD (10-5) 

Cup. 13 18 31 20 16 

I.P. 18 18 80 48 37 

Table 4.2. Number of endmembers. Real images. 
 

4.2. Results for endmembers extraction and abundances calculation. 

 

4.2.1. Results with synthetic images. 

 

Image simulations were performed with a very small number of pixels, 

with the aim of studying the convergence of the method to images with 
different noise levels and different number of endmembers. The limit of 

iterations performed by the algorithm is set as 1000 iterations for each 

endmember extracted. Moreover, for each image, endmembers are also 
extracted employing the VCA and NFinder algorithms and in each case 

abundances were calculated using the FCLSU algorithm. 5 simulations 

were performed for each type of image. The average results are found in 
Table 4.3. 

 

Image 
Average values 

SA SRE 

Dim p SNR TFM VCA NF TFM VCA NF 

400 5 

60 

0,46 0,14 3,16 21,9 31,3 -1,5 

625 10 0,74 0,41 5,41 20,0 26,9 -3,0 

900 15 0,85 0,33 6,55 19,5 26,1 -3,4 

Table 4.3. Small synthetic images. 
 
The quality of the results obtained by the algorithm increases when increase 

the dimension of the image. For this reason, simulations with images of 
10000 pixels we performed. 5 simulations were performed for each type of 

image. The average results are found in Table 4.4. 

 

Image 
Average values 

SA SRE 

p SNR TFM VCA NF TFM VCA NF 

5 
60 0,42 0,01 1,17 21,8 30,0 -2,1 

20 1,20 3,10 6,70 20,2 21,6 -2,2 

Table 4.4. Synthetic images of 1000 pixels. 
 

4.2.2. Results with real images. 

 

Simulations were conducted with the real image of Cuprite. In this 
simulations, the number of iterations to be performed by the algorithm is 

varied between 1000, 500 and 250 for each endmember extracted. The 

results are shown in table 4.5. 
 

Algorithm Average SA RMSE 

TFM 1000 8,79 23·10-5 

TFM 500 9,23 23·10-5 

TFM 250 9,55 24·10-5 

VCA 9,17 16·10-5 

NFinder 7,08 37·10-5 

Tabla 4.5. Cuprite image. Dimension 250x191x188 
 

5. CONCLUSIONS 

 

A new algorithm has been developed in order to perform the endmember 

extraction and their abundance calculation. This algorithm is highly 

parallelizable and performs only simples operations. Good results have 

been obtained with this algorithm compared with the most popular 
algorithm for these tasks. Moreover, these results are consistent to the 

variations of the dimension of the image, the number of endmembers and 

the noise. 
 

Otherwise, a new method has been proposed in order to estimate the 

number of endmembers and making the dimensional reduction of the 
hyperespectral image, based on the Implicitly Restarted Arnoldi’s method 

for calculating eigenvalues and eigenvectors. Good results have been 

obtained with this algorithm compared with the most popular algorithm for 
these tasks. Moreover, these results are consistent to the variations of the 

dimension of the image, the number of endmembers and the noise. 

 
 

 



 

 

  



 


