
Multispectral and hyperspectral compressor CCSDS-

123 model with Intel® CoFluent™ Studio

Ana Gómez, Sebastián López, Roberto Sarmiento, Lucana Santos

Institute for Applied Microelectronics (IUMA)

Division of Integrated Systems Design (DSI)

University of Las Palmas de Gran Canaria (ULPGC), Spain

Abstract—This paper presents an approach to the modelling of

the current standard algorithm for on-board hyperspectral and

multispectral data compression (CCSDS-123) using the Intel®

CoFluent™ Studio. The obtained results are useful to identify

avoidable data dependencies in the reference software

implementation and the impact of some parameters in

performance.

Keywords - Intel® CoFluent™ Studio; CCSDS Standard

hyperspectral compression, ESL.

I. INTRODUCTION (HEADING 1)

Remote sensing multispectral and hyperspectral imaging
has become increasingly important due to its multiple
applications and the introduction of new high-resolution
sensors, able to collect a huge amount of data that need to be
compressed. Among the many available algorithms for
compression, the CCSDS-123 Recommendation for lossless
Multispectral and Hyperspectral data compression [1] is
currently the reference for the upcoming space missions.

In this work, we present an approach to model the CCSDS-
123 algorithm using Intel® CoFluent™ Studio tool, with the
aim of providing an initial model, which once modified could
provide in the future the right specifications that will make it
possible to design an FPGA implementation of the algorithm
which achieves the throughput and occupancy desired by a
potential user. The Intel® CoFluent™ Studio tool [3] offers a
visual model-driven development solution, which enables for
performance prediction and design space exploration of
electronic systems..

II. OVERVIEW OF THE CCSDS-123 ALGORITHM

The CCSDS-132 describes the compressor as a two-part
functional system: prediction and entropy coder. It offers two
options for the entropy coding stage: the sample-adaptive
entropy coding and the block-adaptive entropy coding, which
corresponds to the specifications of the CCSDS-121 standard
[2]. A short overview of the algorithm is presented next.

A. Prediction

First a local sum 𝜎𝑧,𝑦,𝑥 of the neighbouring sample values is

computed by one of two possible configurations: column-
oriented, using the neighbor on top of the current sample, or
neighbour-oriented, using 4 neighbouring samples.

Local sums are used to calculate the central local
differences values 𝑑𝑧,𝑦,𝑥 and the directional local differences

𝑑𝑧,𝑦,𝑥
𝑁 , 𝑑𝑧,𝑦,𝑥

𝑊 and 𝑑𝑧,𝑦,𝑥
𝑁𝑊 according to the user’s selections to

perform full or reduced prediction. After obtaining the
predicted sample, �̂�𝑧,𝑦,𝑥, the prediction residuals are calculated

and mapped to positive integer values.

B. Coding

The mapped prediction residuals 𝛿𝑧,𝑦,𝑥 , are sequentially

encoded in the order selected by the user: band-sequential
(BSQ) or band-interleaved (BI). This encoding order specifies
likewise the order in which the encoded samples are arranged
in the compressed file.

Under the sample-adaptive entropy coding approach, each
mapped prediction residual is encoded using a Golomb power-
of-two variable-length binary codeword, based on adaptive
code selection statistics such an accumulator and a counter.

The block-adaptive entropy coder utilizes the Rice coder
defined in the CCSDS-121 standard, where coding is applied to
a block of 𝐽 consecutive pre-processed samples.

III. DESIGN METHODOLOGY

A reference software implementation developed by the
European Space Agency (ESA), which is available in [4], was
used as basis for this work. The reference code has been split
into several block functions, which represent the main stages of
the compression, in order to develop the application model.
The functions obtained from the CCSDS-123 reference
software are located inside each block, which have been
modified in order to adapt the C code to the CoFluent ™
Studio environment. The different parts of the designed
application model are detailed below:

 Read Parameters block is in charge of storing all the
encoder input parameters.

 Predictor block aims at calculating the image residuals,
through three different functions: readSamples function
stores the image samples; localDifferences function
computes local differences used during the prediction
process; and weights function, where the prediction
residuals of the samples are calculated.

 Encoder block is composed by a header generator
function and the entropy coding function, with either the
sample-adaptive or the block-adaptive encoding option.

For each block, different components are placed in to

achieve the desired behavior. Functions might read or write in

shared variables and might activate or receive event signals;

these events guarantee the synchronization between different

functions, ensuring that shared variables are only written and

read at the appropriate time. Functions are sequentially

executed by loops, which depend on a simulation value

(parameter Iterations). Fig. 1 shows, as example, the

readParameters and predictor blocks implemented in

CoFluent™ Studio.

Fig. 1: Application model readParameters and predictor block

Intel® CoFluent™ Studio offers different simulation

charts, as the one shown in Fig. 2, where transactions between

different functions can be analyzed, through visualization of

function’s activity, shared variables and events. The

application model has been verified through these kind of

charts and the resulting compressed images in comparison

with the resulting images from the reference software.

Fig. 2: Application model timeline simulation chart

IV. RESULTS

Performance in terms of throughput has been analyzed, as

shown in Fig. 3, for both encoding options.

Fig. 3: Throughput of application model

Different simulations have been executed for the

application model, including platforms considerations shown

in Fig. 4, while varying different application and design

parameters.

Fig. 4: simplePlatform and combinedSWHWPlatform

From the results obtained from the simulations, a final

model has been developed, where prediction and coding work

at sample level, through a residual queue as highlighted in Fig.

5, obtaining a higher throughput as illustrated in Fig. 6.

Fig. 5: Improved application model

Fig. 6: Throughput comparison between improved and initial application

models

V. CONCLUSIONS

A functional model of the CCSDS-123 standard

compressor has been implemented with CoFluent™ Studio

software tool. This model has been verified through a

reference images set tested with the reference software results.

The model has been analyzed in order to obtain influence from

different parameters. Finally, an improved model has been

implemented able to obtain a higher throughput than the

original.

REFERENCES

[1] Lossless Multispectral & Hyperspectral Image Compression.
Recommendation for Space Data System Standards, CCSDS 123.0-B-1.
Blue Book. Issue 1. Washington, D.C.: CCSDS, May 2012.

[2] Lossless Data Compression. Recommendation for Space Data System
Standards, CCSDS 121.0-B-2. Blue Book. Issue 2. Washington, D.C.:
CCSDS, May 2012.

[3] IntelCoFluentStudio_v5.2_Reference_Guide, Intel Corporation.

[4] ESA Data Compression Tools, available, 2015:
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onb
oard_Data_Processing/Data_compression_tool

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

u
gh

p
u

t
(M

Sp
s)

nº of previous bands for prediction

Throughput

Modelo mejorado Modelo básico

