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Abstract—This paper presents an approach to the modelling of 

the current standard algorithm for on-board hyperspectral and 

multispectral data compression (CCSDS-123) using the Intel® 

CoFluent™ Studio. The obtained results are useful to identify 

avoidable data dependencies in the reference software 

implementation and the impact of some parameters in 

performance. 
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I.  INTRODUCTION (HEADING 1) 

Remote sensing multispectral and hyperspectral imaging 
has become increasingly important due to its multiple 
applications and the introduction of new high-resolution 
sensors, able to collect a huge amount of data that need to be 
compressed. Among the many available algorithms for 
compression, the CCSDS-123 Recommendation for lossless 
Multispectral and Hyperspectral data compression [1] is 
currently the reference for the upcoming space missions. 

In this work, we present an approach to model the CCSDS-
123 algorithm using Intel® CoFluent™ Studio tool, with the 
aim of providing an initial model, which once modified could 
provide in the future the right specifications that will make it 
possible to design an FPGA implementation of the algorithm 
which achieves the throughput and occupancy desired by a 
potential user. The Intel® CoFluent™ Studio tool [3] offers a 
visual model-driven development solution, which enables for 
performance prediction and design space exploration of 
electronic systems.. 

II. OVERVIEW OF THE CCSDS-123 ALGORITHM 

The CCSDS-132 describes the compressor as a two-part 
functional system: prediction and entropy coder. It offers two 
options for the entropy coding stage: the sample-adaptive 
entropy coding and the block-adaptive entropy coding, which 
corresponds to the specifications of the CCSDS-121 standard 
[2]. A short overview of the algorithm is presented next. 

A. Prediction 

First a local sum 𝜎𝑧,𝑦,𝑥 of the neighbouring sample values is 

computed by one of two possible configurations: column-
oriented, using the neighbor on top of the current sample, or 
neighbour-oriented, using 4 neighbouring samples.  

Local sums are used to calculate the central local 
differences values 𝑑𝑧,𝑦,𝑥  and the directional local differences 

𝑑𝑧,𝑦,𝑥
𝑁  , 𝑑𝑧,𝑦,𝑥

𝑊  and 𝑑𝑧,𝑦,𝑥
𝑁𝑊  according to the user’s selections to 

perform full or reduced prediction. After obtaining the 
predicted sample, �̂�𝑧,𝑦,𝑥, the prediction residuals are calculated 

and mapped to positive integer values. 

B. Coding 

The mapped prediction residuals 𝛿𝑧,𝑦,𝑥 , are sequentially 

encoded in the order selected by the user: band-sequential 
(BSQ) or band-interleaved (BI). This encoding order specifies 
likewise the order in which the encoded samples are arranged 
in the compressed file.  

Under the sample-adaptive entropy coding approach, each 
mapped prediction residual is encoded using a Golomb power-
of-two variable-length binary codeword, based on adaptive 
code selection statistics such an accumulator and a counter. 

The block-adaptive entropy coder utilizes the Rice coder 
defined in the CCSDS-121 standard, where coding is applied to 
a block of 𝐽 consecutive pre-processed samples. 

III. DESIGN METHODOLOGY 

A reference software implementation developed by the 
European Space Agency (ESA), which is available in [4], was 
used as basis for this work. The reference code has been split 
into several block functions, which represent the main stages of 
the compression, in order to develop the application model. 
The functions obtained from the CCSDS-123 reference 
software are located inside each block, which have been 
modified in order to adapt the C code to the CoFluent ™ 
Studio environment. The different parts of the designed 
application model are detailed below: 

 Read Parameters block is in charge of storing all the 
encoder input parameters. 

 Predictor block aims at calculating the image residuals, 
through three different functions: readSamples function 
stores the image samples; localDifferences function 
computes local differences used during the prediction 
process; and weights function, where the prediction 
residuals of the samples are calculated. 

 Encoder block is composed by a header generator 
function and the entropy coding function, with either the 
sample-adaptive or the block-adaptive encoding option. 

For each block, different components are placed in to 

achieve the desired behavior. Functions might read or write in 

shared variables and might activate or receive event signals; 

these events guarantee the synchronization between different 



functions, ensuring that shared variables are only written and 

read at the appropriate time. Functions are sequentially 

executed by loops, which depend on a simulation value 

(parameter Iterations). Fig. 1 shows, as example, the 

readParameters and predictor blocks implemented in 

CoFluent™ Studio. 

 

Fig. 1: Application model readParameters and predictor block 

Intel® CoFluent™ Studio offers different simulation 

charts, as the one shown in Fig. 2, where transactions between 

different functions can be analyzed, through visualization of 

function’s activity, shared variables and events. The 

application model has been verified through these kind of 

charts and the resulting compressed images in comparison 

with the resulting images from the reference software. 

 

Fig. 2: Application model timeline simulation chart 

IV. RESULTS 

Performance in terms of throughput has been analyzed, as 

shown  in Fig. 3, for both encoding options. 

 

Fig. 3: Throughput of application model 

Different simulations have been executed for the 

application model, including platforms considerations shown 

in Fig. 4, while varying different application and design 

parameters. 

 

                
Fig. 4: simplePlatform and combinedSWHWPlatform 

From the results obtained from the simulations, a final 

model has been developed, where prediction and coding work 

at sample level, through a residual queue as highlighted in Fig. 

5, obtaining a higher throughput as illustrated in Fig. 6. 

 

Fig. 5: Improved application model 

 
Fig. 6: Throughput comparison between improved and initial application 

models 

V. CONCLUSIONS 

A functional model of the CCSDS-123 standard 

compressor has been implemented with CoFluent™ Studio 

software tool. This model has been verified through a 

reference images set tested with the reference software results. 

The model has been analyzed in order to obtain influence from 

different parameters. Finally, an improved model has been 

implemented able to obtain a higher throughput than the 

original. 

REFERENCES 

[1] Lossless Multispectral & Hyperspectral Image Compression. 
Recommendation for Space Data System Standards, CCSDS 123.0-B-1. 
Blue Book. Issue 1. Washington, D.C.: CCSDS, May 2012.  

[2] Lossless Data Compression. Recommendation for Space Data System 
Standards, CCSDS 121.0-B-2. Blue Book. Issue 2. Washington, D.C.: 
CCSDS, May 2012.  

[3] IntelCoFluentStudio_v5.2_Reference_Guide, Intel Corporation. 

[4] ESA Data Compression Tools, available, 2015: 
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onb
oard_Data_Processing/Data_compression_tool

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

u
gh

p
u

t 
(M

Sp
s)

 

nº of previous bands for prediction 

Throughput 

Modelo mejorado Modelo básico


