

 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
 Institute for Applied Microelectronics
 Information and Communication Systems

t +34 928 451 086

f +34 928 451 083

iuma@iuma.ulpgc.es

www.iuma.ulpgc.es

Campus Universitario de Tafira

35017 Las Palmas de Gran Canaria

Master of Science in

Telecommunication Technologies

Master’s Thesis

Design and Implementation of a MapReduce

architecture for Big Data applications using

High-Level Synthesis design flow

Author: Julian Spahr
Supervisor(s): Dr. Pedro Pérez Carballo
 Prof. Antonio Núñez Ordóñez

Date: July 2017

 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
 Institute for Applied Microelectronics
 Information and Communication Systems

t +34 928 451 086

f +34 928 451 083

iuma@iuma.ulpgc.es

www.iuma.ulpgc.es

Campus Universitario de Tafira

35017 Las Palmas de Gran Canaria

Master of Science in

Telecommunication Technologies

Master’s Thesis

Design and Implementation of a MapReduce

architecture for Big Data applications using

High-Level Synthesis design flow

Signatures

Author: Julian Spahr Signature:

Supervisor(s): Dr. Pedro Pérez Carballo Signature:

 Prof. Antonio Núñez Ordóñez Signature:

Date: July 2017

 UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA
 Institute for Applied Microelectronics
 Information and Communication Systems

t +34 928 451 086

f +34 928 451 083

iuma@iuma.ulpgc.es

www.iuma.ulpgc.es

Campus Universitario de Tafira

35017 Las Palmas de Gran Canaria

Master of Science in

Telecommunication Technologies

Master’s Thesis

Design and Implementation of a MapReduce

architecture for Big Data applications using

High-Level Synthesis design flow

Evaluation

Grade: ..

President: Signature:

Secretary: Signature:

Member: Signature:

Date: July 2017

Acknowledgements

ACKNOWLEDGEMENTS

I want to take the opportunity to thank my supervisors, Pedro Pérez Carballo and

Antonio Núñez Ordóñez, for their special dedication and persistence during the

development of this work. Thanks to their efforts I have been able to carry out this Master’s

Thesis.

I want to also thank my colleague and friend Yubal Barrios Alfaro, for his suggestions

and propositions that have helped me improve this work, and sort my ideas whenever I

doubted myself.

 Lastly, I thank my family, their commitment and patience, through which I was able

to finalize this master’s degree. And specially my mother, for her endless curiosity and

devotion.

Resumen

RESUMEN

El presente proyecto abarca el diseño e implementación de una plataforma

hardware que integra algoritmos críticos de procesamiento en aplicaciones para Big Data

sobre un SoC de la serie Xilinx Zynq, mejorando de forma significativa su eficiencia con

respecto a implementaciones software del mismo tipo. De forma específica, se ha diseñado

una plataforma MapReduce aplicada al algoritmo WordCount, cuya arquitectura permite

el reemplazo de bloques IP para modificar la aplicación de una plataforma a otra, siempre

y cuando cumpla un esquema del tipo MapReduce.

Este trabajo comienza haciendo referencia a los aspectos claves del concepto de Big

Data y técnicas para el análisis de datos masivos en sistemas modernos. Con ello se abarca

el modelo de programación MapReduce, para procesar y generar grandes cantidades de

datos por medio de técnicas de paralelismo sobre clusters. Seguidamente se abarca la serie

Xilinx Zynq y la metodología de diseño empleada para la creación de plataformas flexibles

y configurables para desembocar en las herramientas empleadas en el presente proyecto,

entre las cuales se destaca el entorno de desarrollo de sistemas basados en IP, Xilinx Vivado

Design Suite.

Finalmente, el proyecto se ha sometido a una fase de validación con objeto de

estimar los parámetros del sistema final, entre los cuales se subrayan parámetros de

latencia, throughput y nivel de utilización del sistema MapReduce. En base a estos

resultados, se concluye que la plataforma diseñada representa una buena solución en lo

que respecta al análisis de datos masivos para aplicaciones Big Data debido a su alta

velocidad de cómputo, bajo consumo de potencia y nivel de utilización y en última instancia

debido a su flexibilidad a ser adaptado a otras aplicaciones del tipo MapReduce de

características similares.

Abstract

ABSTRACT

This Master’s thesis comprises the design and implementation of a hardware

platform that integrates critical algorithms of Big Data application processing on a Xilinx

Zynq series SoC, improving significantly it’s efficiency in comparison to software

implementations. Specifically, a MapReduce platform has been designed using the classic

WordCount application to establish a generic architecture that allows for easy IP block

substitution to modify the application into another, if it complies with the MapReduce

outline.

This work starts presenting key aspects of the Big Data concept and techniques for

massive data analysis in modern systems. Through this, we cover the MapReduce

programming model, for large data processing and generation through parallelization on

clusters. Following up, the used Xilinx Zynq Design Methodology is explained, that allows

for the design of flexible and configurable platforms, leading finally into the tools used in

this thesis, among which we emphasize the Xilinx Vivado Design Suite for SoC FPGA.

Lastly, the designed prototype is put through a validation phase to estimate the

performance parameters of the system, i.e. latency, throughput and utilization of the

MapReduce system. Based on these results, we conclude that the designed platform is a

good solution with respect to massive data analysis for Big Data applications, due to its high

computing speed, low power consumption and utilization and ultimately due to its

flexibility to be adapted for other MapReduce applications of similar characteristics.

Index

i

INDEX

Chapter 1. Introduction .. 1

1.1. Background .. 1

1.1.1. Global IP traffic ... 1

1.1.2. An introduction to Big Data and Map-Reduce 2

1.1.3. FPGA based flexible platforms ... 4

1.1.4. State of the art ... 6

1.2. Objectives .. 10

1.3. Petitionary .. 11

1.4. Document structure ... 11

Chapter 2. Big Data ... 13

2.1. Definition ... 13

2.2. Characteristics .. 14

2.3. Data mining challenges .. 14

2.4. The MapReduce programming model ... 15

2.4.1. MapReduce dataflow ... 16

2.4.2. Architecture .. 17

2.5. Conclusion .. 18

Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow 19

3.1. Xilinx Zynq-7000 All Programmable SoC .. 19

3.1.1. The ZC706 Evaluation Kit .. 20

Index

ii

3.1.2. Processing System (PS) .. 22

3.1.3. Programmable Logic (PL) ... 23

3.1.4. PS-PL Communication .. 23

3.1.5. Zynq-7000 Memory Map ... 24

3.2. Xilinx HighLevel Design Flow ... 25

3.2.1. Xilinx Vivado and SDK ... 25

3.2.2. Xilinx Vivado HLS .. 27

3.3. Conclusion ... 28

Chapter 4. Proposed solution ... 29

4.1. Initial constraints and considerations ... 29

4.2. MapReduce dataflow architecture .. 30

4.2.1. Split .. 32

4.2.2. Map .. 33

4.2.3. Reduce .. 34

4.2.4. Merge ... 34

4.3. Streaming interfaces considerations ... 35

4.4. IP block depth and preliminary worker footprint 35

4.5. Conclusion ... 37

Chapter 5. Hardware platform design .. 39

5.1. Vivado HLS considerations .. 39

5.2. Synthesizable functions library .. 41

5.3. Tuneable parameters file .. 43

5.4. AMBA AXI4 Stream driver .. 44

5.5. IP block modelling .. 46

5.5.1. Split .. 46

5.5.2. Map .. 50

Index

iii

5.5.3. Reduce .. 52

5.5.4. Merge ... 58

5.6. Co-simulation and implementation results ... 60

5.7. Platform modelling .. 62

5.8. Platform Implementation results .. 66

5.8.1. Layout ... 66

5.8.2. Utilization ... 67

5.8.3. Utilization factor ... 68

5.8.4. Timing summary ... 70

5.8.5. Power consumption ... 70

5.9. Conclusion .. 71

Chapter 6. Hardware-software integration .. 73

6.1. Hardware platform instantiation and BSP creation 73

6.2. Bare-metal application .. 76

6.2.1. Used libraries and drivers ... 77

6.2.2. System Setup .. 78

6.2.3. Application flow ... 80

6.3. Conclusion .. 82

Chapter 7. Validation phase .. 83

7.1. Validation environment characteristics ... 83

7.2. Latency analysis ... 85

7.2.1. Latency measurements .. 86

7.2.2. Throughput measurements ... 88

7.3. Conclusions and system validation .. 89

Chapter 8. Result analysis, conclusions and future work 91

8.1. Overall results and conclusions ... 91

Index

iv

8.2. Improvement suggestions and future developments 93

8.2.1. Throughput issues .. 93

8.2.2. Memory limitations.. 94

8.2.3. Parallelism .. 94

8.2.4. Software application improvement ... 95

8.2.5. Architecture modifications .. 95

8.3. Closing statements .. 96

References 97

Figure index

v

FIGURE INDEX

Figure 1. – Global IP traffic growth forecast per region [2] .. 2

Figure 2. – Big Data sources .. 2

Figure 3. – Basic MapReduce architecture [6] .. 3

Figure 4. – Flexibility and efficiency trade-off for different computation solutions [10] 4

Figure 5. – The Zynq-7000 All Programmable SoC architecture ... 5

Figure 6. – ZC706 Board Features .. 6

Figure 7. – HLSMapReduceFlow dataflow architecture [6] ... 7

Figure 8. – Basic data flow architecture for Phoenix [17] ... 8

Figure 9. – Single-node heterogeneous accelerator architecture [23] 9

Figure 10. – Multi-node heterogeneous accelerator architecture [23] 10

Figure 11. – Topology of classical MapReduce framework [6] ... 16

Figure 12. – Original MapReduce architecture proposed by Dean and Ghemawat [7] 17

Figure 13. – Zynq 7000 Block Diagram [27] ... 20

Figure 14. – ZC706 Evaluation Board [15] ... 21

Figure 15. – ZC706 High-Level Block Diagram [27] .. 21

Figure 16. – Zynq device simplified architecture [14] ... 23

Figure 17. – Zynq-7000 Memory Map [26] ... 24

Figure 18. – Vivado Design Suite High-Level Design Flow [30] ... 26

Figure 19. – Vivado HLS Design Flow [31] ... 27

Figure 20. – Simple Word Count application using a MapReduce framework 30

Figure 21. – MapReduce worker architecture – Proposition .. 31

Figure 22. – Data splitting example ... 32

Figure 23. – Inefficient data splitting example .. 32

Figure 24. – Dataflow friendly data splitting ... 33

Figure index

vi

Figure 25. – Map example ... 33

Figure 26. – Reduce example .. 34

Figure 27. – Merge example .. 35

Figure 28. – Key-Value streaming protocol ... 35

Figure 29. – Key-Value streaming protocol width ... 37

Figure 30. – Example of an AXI Stream waveform .. 44

Figure 31. – Split IP block .. 47

Figure 32. – Split IP block behavioural .. 49

Figure 33. – Map IP block .. 50

Figure 34. – Map IP block behavioural .. 51

Figure 35. – Reduce IP block ... 52

Figure 36. – Reduce IP block behavioural ... 56

Figure 37. – Merge IP block ... 58

Figure 38. – Merge IP block behavioural ... 60

Figure 39. – MapReduce based Word Count worker architecture 62

Figure 40. – Zynq ZC706 Platform – Complete MapReduce worker 63

Figure 41. – FIFO position and configuration .. 65

Figure 42. – DMA PL-PS interrupt setup ... 65

Figure 43. – MapReduce worker platform layout ... 66

Figure 44. – Hardware platform utilization report (%) ... 68

Figure 45. – Hardware platform power consumption summary .. 70

Figure 46. – Word Count MR Worker Hardware Platform files .. 74

Figure 47. – Xilinx SDK integration flow and Hardware-Software integration 75

Figure 48. – ZC706 BSP and its drivers .. 76

Figure 49. – System setup flow ... 78

Figure 50. – Main application behavioural flow ... 80

Figure 51. – Zynq ZC706 setup .. 84

Figure 52. – System Latency using DMA per interruptions ... 86

Figure 53. – System Latency using Reduce stage per polling.. 87

Figure 54. – Mean system latency comparison... 87

Figure 55. – System throughput estimation ... 88

Figure index

vii

Figure 56. – Word Count execution sample .. 89

Table index

ix

TABLE INDEX

Table 1. – Implementation report – Frequency, latency and throughput 61

Table 2. – Implementation report – Programmable logic utilization 61

Table 3. – Absolute hardware platform utilization report ... 67

Table 4. – Relative hardware platform utilization report.. 67

Table 5. – Hardware accelerator utilization Factor ... 69

Table 6. – Slices utilization factor comparison with [34] .. 69

Table 7. – Used libraries and drivers ... 77

Table 8. – Validation test keys ... 84

Acronyms

xi

ACRONYMS

A

Accelerator Coherency Port (ACP) ... 6

Advanced eXtensible Interface (AXI) ... 6

Advanced Microcontroller Bus Architecture (AMBA).. 6

Advanced Peripheral Bus (APB) ... 24

All Programmable (AP) .. 5

Application Processor Unit (APU) .. 20

Application-Specific Integrated Circuit (ASIC) ... 4

B

Back-Propagation (BP) ... 8

Block Ram (BRAM) ... 23

C

Central Processing Unit (CPU) ... 6

Compound Annual Growth Rate (CAGR) ... 1

Content Addressable Memory (CAM) ... 57

Controller Area Network (CAN) ... 20

D

Digital Signal Processing (DSP) .. 23

Digital Signal Processor (DSP) .. 4

DMA Per Interruptions Setup (DPIS) ... 85

F

Field-Programmable Gate Arrays (FPGA) .. 4

First In First Out (FIFO) .. 35

Flip Flop (FF) .. 23

Acronyms

xii

G

General Purpose Input-Output (GPIO) ... 20

General Purpose Processor (GPP) .. 4

Gigabit Ethernet (GigE) .. 20

Google Cloud Platform (GCP) ... 8

Graphics Processing Unit (GPU) ... 4

H

Hardware (HW) .. 73

Hardware Platform (HWP) ... 73

High Performance and Low power (HPL) ... 5

High-Performance Computing (HPC) ... 91

I

I/O Peripherals (IOP) .. 20

Industrial Systems and CAD (SICAD) .. 11

Institute for Applied Microelectronics (IUMA)... 11

Integrated Logic Analyzer (ILA) .. 85

Inter-Integrated Circuit (I2C) .. 20

Internet Protocol (IP) ... 1

J

Joint Test Action Group (JTAG) .. 24

K

Key-Value (KV) .. 3

L

Level 1 Cache (L1)... 22

Level 2 Cache (L2)... 22

Look Up Table (LUT) ... 23

M

Megabytes (MB) ... 17

Memory Mapped To Stream (MM2) .. 65

P

Particle Swarm Optimization (PSO) .. 8

Peripheral Component Interconnect Express (PCIe) .. 62

Petabytes (PB) .. 13

Acronyms

xiii

Power Management Unit (PMU) ... 77

Processing System (PS) .. 5

Programmable Logic (PL) ... 5

Q

Quality of Service (QoS) ... 2

R

Random Access Memory (RAM) .. 22

Reduce Per Polling (RPP) ... 85

Register Transfer Level (RTL) ... 27

S

Secure Digital Input Output (SDIO).. 20

Serial Peripheral Interface (SPI) ... 20

Stream To Memory Mapped (S2MM) ... 65

System On a Chip (SoC) ... 4

T

Taiwan Semiconductor Manufacturing Company (TSMC) .. 5

Terabytes (TB) ... 13

Tri-mode Ethernet MAC (TEMAC) ... 22

U

Universal Asynchronous Receiver/Transmitter (UART) ... 20

Universal Serial Bus (USB) ... 20

Utilization Factor (UF) ... 68

W

Worst Negative Slack (WNS) ... 70

X

Xilinx Analog to Digital Converter (XADC) ... 24

| 1

Chapter 1. INTRODUCTION

In this first chapter, the reader is presented with the necessary background and

motivations that condition the work done in this thesis, including the objectives pursued

by the authors and the structure that the current document holds. By careful reading of

this chapter, the reader acquires a basic knowledge about the origins and expected results

of this work.

1.1. BACKGROUND

1.1.1. Global IP traffic

Every day we use devices and systems that take advantage of data oriented

infrastructure such as mobile phones, tablets and PC’s, that process and generate large

volumes of information. This includes traffic from social networks, search engines, e-mail

exchange systems and a data derived from sensor monitorization systems used in public

transport and infrastructure, vehicles such as airplanes, cars, etc.… [1], [2]. Figure 1 shows

global Internet Protocol (IP) derived traffic, which is in continuous growth, with a 2020

forecast of 30.4 to 34.9 % traffic generated by North America and Asia Pacific regions, based

on a 22 % Compound Annual Growth Rate (CAGR) in between the years 2015 and 2020 [2].

This implies global IP traffic of a volume around 110 exabytes (1018 bytes) per month, in

2017 only [2].

Chapter 1. Introduction

2 |

Figure 1. – Global IP traffic growth forecast per region [2]

To provide a satisfactory level of Quality of Service (QoS) and guarantee efficient

network traffic, it is necessary to understand the underlying behaviour of IP networks and

it’s data processing systems and techniques, as the global IP traffic grows larger each day

[3].

1.1.2. An introduction to Big Data and Map-Reduce

The term Big Data is understood as the traffic of information that flows in

immeasurable quantities between sources, including social networks, public databases,

mobile devices, bank and insurance transaction data, etc.… as it is shown in Figure 2.

Figure 2. – Big Data sources

1.1. Background

| 3

Ultimately, Big Data is collected, structured, organized and indexed for its analysis

and useful data extraction; since the elements that compose the datasets itself have no

value on their own, we use sophisticated algorithms, comprised in the Data Mining and Big

Data Analysis fields, to find recurring patterns and conceive useful information [1].

A classic approach to information processing in Big Data for large cluster

organization is the MapReduce (MR) programming model, as proposed by Google and used

to process vast amounts of data using a high amount of processing units [4]–[7]. The

MapReduce Algorithm comprises two main phases: the mapping phase, where the data is

processed and translated to useful information as a so called key-value (KV) pair, and the

reduce phase, where the key-value structured data is merged based on a given criteria [6],

[7]. This criterion could be a repetition counting system of either the key’s or value’s, a

combination of both or arithmetic operations of any of them, as it depends on its ultimate

application. A generic MapReduce architecture, that complies with the afore mentioned

explanation, is shown in Figure 3. In this example, the data is firstly split into multiple data

chunks and given to the mapping stage. Once the mapping is done, the information is

shuffled and given to the reduce stage, where every reduce element represents a reduce

criterion or application. The data is merged at the end of the reduce stage, to comprise

useful, processed information.

Figure 3. – Basic MapReduce architecture [6]

The MapReduce framework finds a wide range of applications, from matrix

arithmetic (Matrix Multiplication), text processing (String Matching, Word Count), image

processing (RGB Histogram) and a variety of Machine Learning (ML) and Artificial

Intelligence (AI) kernels (Linear Regression, PCA, Kmeans, etc.…) [4]–[6].

Chapter 1. Introduction

4 |

Systems dedicated to data processing, analysis and organization, are computation

intensive, which implies a non-negligible computation derived latency, high memory

storage requirements and high power consumption. For this reason, it is necessary to

design and develop custom solutions that try to attack these problems [6], [8], [9].

In order to address this need, as a result of recent research and developments in

the field, it has been concluded that hybrid architectures, between General Purpose

Processor (GPP) machines and Field-Programmable Gate Arrays (FPGA) on a single System

On a Chip (SoC) based platform can address this problem, creating solutions with high

computing capability and low power consumption [6], [8], [9].

1.1.3. FPGA based flexible platforms

From an architectural point of view, we can distinguish two main implementation

types: software based programs and solutions on a multicore GPP or hardware based

implementations on Application-Specific Integrated Circuits (ASIC) or FPGA [6], [9]. In

between both of the presented solutions, FPGA based platforms implement efficiently

complex electronic systems with low power consumption, although its flexibility is inferior

to other applications, such as Digital Signal Processors (DSP), Graphics Processing Units

(GPU) or GPP’s, as it is shown in Figure 4.

Figure 4. – Flexibility and efficiency trade-off for different computation solutions [10]

To achieve maximum flexibility between general purpose and particular solutions

for a given system, we can incorporate GPP processors altogether with an FPGA core, thus

Efficiency

Fl
e

xi
b

ili
ty

1.1. Background

| 5

creating a system with the computation capability of addressing the desired task. Such a

device is considered a FPGA based SoC.

From a commercial point of view, we can find configurable platforms of this kind

(GPP + FPGA) from multiple different companies on the market in the field of

programmable devices. This thesis focuses on solutions provided by Xilinx, particularly

focusing on the Zynq All Programmable (AP) SoC series.

Xilinx Zynq-7000 AP SoC’s, are made up of two main blocks: first, an ARM Cortex-A9

MPCore operating at a maximum frequency of 1 GHz, and secondly, a 7 series Xilinx FPGA

made through TSMC’s 28-nm HPL process [11]. Additionally, the mentioned SoC integrates

multiple high-speed transceivers and peripherals to allow for a wide range of solutions with

a single device [12]–[14]. Figure 5 shows the architecture of the Zynq-7000 All

Programmable SoC device.

Figure 5. – The Zynq-7000 All Programmable SoC architecture

As shown in the previous figure, the Zynq-7000 devices are composed of

Programmable Logic (PL, yellow) and the Processing System (PS, blue). The Zynq PL owns

its features to the 7 series FPGA’s from Xilinx and is connected to the PS through standard

Chapter 1. Introduction

6 |

Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI)

and Accelerator Coherency Port (ACP) interfaces.

This Master’s Thesis uses the ZC706 Evaluation Kit, which employs two 32 bit ARM

Cortex A9 Central Processing Units (CPU) and a 7 series Kintex FPGA [15]. The employed

device (XC7Z045 FFG900-2, Figure 6) has enough resources to integrate a Big Data platform.

Figure 6. – ZC706 Board Features

1.1.4. State of the art

Previous work has been done in the MapReduce acceleration through FPGA based

solutions. One of the most important contributions is the fairly recent work done by

Diamantopoulos and Kachris in [6] by substituting high power consuming multi-core

processors involved in MapReduce tasks with Virtex-7 FPGA’s, improving the overall

throughput by a factor of 4.3 and reducing power consumption by a factor of two orders

of magnitude. Diamantopoulos and Kachris propose the so called HLSMapReduceFlow, a

reconfigurable MapReduce accelerator that can be scaled up to data centers with high

programming efficiency by using the Vivado HLS design flow [6], as presented in Figure 7.

1.1. Background

| 7

Figure 7. – HLSMapReduceFlow dataflow architecture [6]

In this case, the input data is split into fragments for the MapReduce architecture

located in the FPGA hardware, and merged once the data reaches the end of a reduce

stage. The mentioned MR architecture is put through a thorough verification phase by

using Histogram, Matrix Multiplication, String Match, Linear Regression, PCA, Kmeans and

Word Count applications. Simple applications (Word Count or Linear Regression) achieve

an average computing time reduction by a factor of 2 while power consumption is reduced

by a factor of 25 for all applications.

This architecture is fairly typical in such applications, as shown in [16] by Ranger,

Raghuraman, Penmetsa et al., and used to present the Phoenix programming API, based

on Google’s MapReduce model [7]. The Phoenix implementation bases itself on the same

basic principles upon which the MapReduce framework is constructed, which is: the map

function processes the input data and generates a set of intermediate Key-Value pairs, and

the reduce function merges the intermediate pairs which have the same key [16]. Phoenix

differs from the original MR framework in that it targets shared-memory systems such as

multi-core chips.

As of today, Phoenix’ modern iteration receives the name of Phoenix++, which

addresses limitations of the original Phoenix implementation, such as an improvement to

the key-value storage, and correction to an inefficient combiner behavioural code that

caused memory access overhead and an improvement to the overall MapReduce task

chunking [17]. Phoenix++ however, employs the same basic data flow architecture as it’s

original, as presented in Figure 8.

Chapter 1. Introduction

8 |

Figure 8. – Basic data flow architecture for Phoenix [17]

Phoenix and Phoenix++ utilize similar verification techniques as the aforementioned

work by Diamantopoulos and Kachris in [6], by using Histogram, Linear regression, Kmeans,

PCA and Word Count applications in order to estimate the efficiency of the

implementation.

Although it is evident that Phoenix++ has its applications in shared-memory systems

with predominantly a software implementation, we want to stress that the frameworks

behaviour, approaches to latency and throughput issues and means of verification, serve

as a backbone to this work to implement a hardware based MapReduce solution.

Another recent work done in the field of software implementations of a MapReduce

framework, is presented in [18] by Lu, Zhan, Huynh et al., where an optimized MR

framework is used on an Intel Xeon Phi processor and compared to the Phoenix++ model,

evaluating both performances with the mentioned applications. Cao, Cui, Shi et al. [19]

employ the MapReduce framework on a back-propagation (BP) neural network in

combination with a Particle Swarm Optimization (PSO) algorithm to improve the PSO itself,

optimize the design of the MR related tasks and therefore achieve a higher classification

accuracy. Aly, Montréal, Shaban et al. [20] apply a MapReduce framework, employed on a

Google Cloud Platform (GCP) to analyse data generated by industrial systems. Melia is a

scalable MR framework utilized on OpenCL based FPGA’s, as developed by Wang, Zhang,

He et al. [21], that uses MapReduce + OpenCL to reduce significantly power and time

consumption, as their Altera Stratix V GX FPGA is compared to CPU and GPU

implementations with the same functionality and application.

1.1. Background

| 9

In terms of heterogeneous accelerator architectures, Ghasemi and Chow [22]

demonstrate a CPU + FPGA based dataflow that takes advantage of the Apache Spark

cluster-computing framework in combination with a custom accelerator inside an FPGA; by

comparing this solution with an Intel Xeon processor, the authors achieve a throughput

improvement by a factor of 2, as the number of acceleration workers increase to 4.

Lastly, Neshatpour, Sasan and Homayoun [23] employ a heterogeneous accelerator

architecture to develop a MapReduce implementation in an Apache Hadoop environment.

The described architecture exploits a CPU + FPGA with a Xilinx Artix-7 and AMBA AXI

interfaces in between workers to reduce the overhead caused by interactions between the

cores. The employed architecture is presented in Figure 9 for a single-node accelerator.

Figure 9. – Single-node heterogeneous accelerator architecture [23]

The shown solution allows for easy scalability as every node can be connected to a

neighbour through a multi-channel gigabit switch [23], as shown in Figure 10.

Chapter 1. Introduction

10 |

Figure 10. – Multi-node heterogeneous accelerator architecture [23]

Its efficiency was explored by executing Naïve Bayes, Kmeans, KNN and SVM

applications, achieving a speedup factor between 1.008 and 4.561 , and a power

consumption reduction factor between 1.07 and 22.20.

As a conclusion of the presented state of the art exploration, we want to stress the

growing trend of using heterogeneous architectures to implement MapReduce based

frameworks for multiple applications to obtain energy and time efficient solutions.

Although the scope of this thesis does not comprise the implementation of a multi-node

solution, we follow the related work to obtain a MR friendly FPGA based node.

1.2. OBJECTIVES

The main objective of this thesis, is the implementation of a hardware based

accelerator on FPGA based SoC, to migrate different elements of the main algorithms that

comprise a Big Data application such as a MapReduce framework, therefore significantly

improving the efficiency of the system through custom hardware design. Consequently, is

important to study the different programming models that exist in Big Data applications,

and particularly in MapReduce frameworks, that allow for massive data processing.

1.3. Petitionary

| 11

First and foremost, one of the main objectives of the current thesis is the study of

the State of the Art in Big Data and MapReduce applications that are relevant in the field.

Secondly, we propose the development of a MapReduce worker platform that

responds to the main needs of the field, which includes low power consumption, flexibility,

and high throughput. To do so, it is essential to develop the underlying architecture that

holds the MapReduce worker on a Xilinx Zynq AP SoC.

With regards to design the proposed architecture, we develop the acceleration

Kernels required, both in hardware and in software, that are used in the final solution. The

MapReduce worker platform will integrate the main MapReduce functionality in a custom

hardware solution while a software kernel is developed to manage the former.

Lastly, we perform the hardware-software integration between the hardware based

acceleration cores and its software application, to both verify the system and to make

parameter measurements and reporting its performance.

This thesis is concluded once the final system passes the verification and validation

phases, as well as a thorough parameter evaluation phase to model its functional behaviour

and performance.

1.3. PETITIONARY

This Master’s Thesis is developed in the Industrial Systems and CAD (SICAD) Division

of the Institute for Applied Microelectronics (IUMA), using a Zynq All Programmable SoC

device as provided by the SICAD division, in order to design a MapReduce compatible

platform and the necessary kernels to accelerate data processing techniques as used in the

Big Data field.

1.4. DOCUMENT STRUCTURE

In this chapter, we present the necessary background for the reader to understand

the purposes and objectives of this work, including a brief covering of basic concepts and

statistics, from global IP traffic to the State of the Art in Big Data and MapReduce

applications.

Chapter 1. Introduction

12 |

Chapter 2 concerns itself with the exposition of the concept of Big Data, Data Mining

and the MapReduce programming model. In Chapter 3 we synthesize the employed

hardware in this thesis, the Xilinx Zynq ZC706 Evaluation Kit, as well as the used High Level

Design flow.

After introducing the hardware and the methodologies to produce our final

solution, in Chapter 4 we cover the proposed solution for a MapReduce framework that is

implemented on the presented Xilinx Zynq AP SoC. This includes the design constrains and

objectives and the underlying architecture that it carries.

Chapter 5 includes the hardware platform design, from its underlying IP blocks to

the platform modelling and result evaluation, diving then into Chapter 6, which covers the

integration of the mentioned hardware platform design with a software application that

uses this hardware accelerating core to its advantage in MapReduce applications.

Chapter 7 concerns the validation of the produced system, by analysing the

performance of the MapReduce worker and its functionality. This document concludes

with Chapter 8, by stating the overall results and characteristics of the produced system, a

brief comparison with similar implementations and suggestions for improvement and

future developments that could build upon this work or elements of it.

| 13

Chapter 2. BIG DATA

The primary goal of this chapter, is to characterize the concepts of Big Data and

MapReduce. Firstly, we cover formal definitions for Big Data, its applications and

challenges, and secondly, we relate these ideas to the MapReduce programming model,

since a variation of this framework is used in this Master’s Thesis.

2.1. DEFINITION

Large chunks of data that belong to IP traffic, are defined as Big Data and it

represents vast amount of heterogeneous information, as defined by Sam Madden in [1]:

“Big data means too big, too fast, or too hard for existing tools to process.”

Too large, because the data size orders of magnitude are around petabytes and

exabytes, as previously stated, and the data itself is comprised of multiple sources; too fast,

because the data must be processed on par with its continuous growth; and too complex

since the problems that arrive through Big Data cannot be solved through conventional

data processing techniques and conventional systems.

Another definition is described by Elgendy and Elragal in [24]:

“The term Big Data as the aggregate of large datasets that grow so large

that they cannot be processed by traditional database management

systems. They are datasets whose size is beyond the ability of commonly

used software tools and storage systems to capture, store, manage, as well

as process the data within a tolerable elapsed time.”

As discussed in section 1.1.1, and by Elgendy and Elragal, the big data sizes are in a

constant growth ranging from a few terabytes (TB, 1012 bytes) to many petabytes (PB,

1015 bytes) of data in one single data set.

Chapter 2. Big Data

14 |

Big Data analytic processing, encompasses four critical requirements: fast data

loading, fast query processing, efficient usage of storage space and strong adaptivity to

highly dynamic workload patterns [24].

2.2. CHARACTERISTICS

In terms of Big Data characteristics we distinguish three ‘Vs’: volume, velocity,

variety [1]:

 Volume, referring to the ever-increasing amount of data.

 Velocity, referring to the speed at which data traverses the network,

considered from the data’s creation, to its transmission, collection and

classification.

 Variety, referring to the heterogeneous structure of large datasets,

comprised of text, audio, images, videos and more unstructured data that

can contain many other formats.

The concepts of volume, velocity and variety are not only the main characteristics

of Big Data, as they represented the main challenges when talking about acquiring,

organizing and analysing large datasets. But it is important to stress that variety of the

datasets is what challenges Big Data solutions the most, as the heterogeneous

characteristic of Big Data type datasets highlight the need for data classification and play a

key role in the selection of the application [1], [24], [25]. Once these challenges have been

addressed, the action of organizing, structuring, classifying and extracting useful data or

patterns out of the dataset is what we call Data Mining [25].

2.3. DATA MINING CHALLENGES

To provide an efficient Data Mining solution, in this section, we must address

multiple design challenges, as evidenced in [25].

Most times, Big Data datasets are found in a distributed memory architectures,

which means that data transaction and storage should be taken into careful consideration.

Thus, we say that data transaction is expensive, as it depletes time and power to move the

datasets so that algorithms can operate on the data. This is an important discussion, since

2.4. The MapReduce programming model

| 15

most algorithms need most of the data to be stored previously on the main memory they

operate on.

A second consideration is the privacy of user related datasets. Encrypted data is

more than beneficial to the user base as it conceals private information but Big Data

applications may not be able to operate on such encrypted data. For example, sensor

network data may or may not be critical in privacy related terms, and can therefore be

transmitted unencrypted and be easily processed by Big Data oriented solutions, as it does

not necessarily represent a harmful threat to the user’s privacy. But it is obvious that data

such as a mobile user’s location is, and might be therefore transmitted encrypted,

rendering its content inaccessible for data mining.

Last, we must address the difficulties that arise when trying to extract useful

information of a given dataset. When data arrives at a processing algorithm or framework,

it finds itself in a raw format, unprocessed, incomplete and from multiple sources, and

needs to be processed into subsets containing elements that share similar characteristics

with each other, a criterion that might differ in between applications. The processed

information must be mined to extract information and construct a model or solution, so

that it can be finally tested to obtain feedback on the relevant information (such as the

fusion techniques and criteria used in the first phase).

It is obvious that, while large data sets are analysed by multiple different

applications and users for different purposes, the underlying system needs to be highly

adaptive; MapReduce is a parallel programming model suitable for such a feat [24].

2.4. THE MAPREDUCE PROGRAMMING MODEL

To facilitate the data fusion and processing stages, Google employs the already

mentioned MapReduce programming model [7], as proposed by Dean and Ghemawat. This

framework is a model and implementation for processing and generating large organized

datasets. We stress that most of the information discussed in this section, is extracted from

the original work done by Dean and Ghemawat in [7], as part of Google’s effort to facilitate

Big Data processing.

Chapter 2. Big Data

16 |

2.4.1. MapReduce dataflow

MapReduce concerns applications that are conceptually straight forward, like String

Matching or Wordcount, but whose input data is unusually large and where computations

must be distributed across of thousands of machines so that the computation time is

reduced to a reasonable amount. To do so the authors conceptualized two main phases in

dataset processing: the map phase and the reduce phase. By dividing the processing into

multiple tasks, the parallelization endeavours can be abstracted and easily divided over

multiple workers or machines.

The model itself takes a set of input key-value pairs (name and content of a file) and

produces a set of output key-value pairs (the organized content and its values). The

mapping function takes an input pair, where the key is the name of the string to be

processed and the value is its content, and produces so called intermediate key-value pairs

that are sent to the reduce function, which merges all the Key-Values together who share

the same value. One of the main elements to this process is the fact that the intermediate

values are supplied to the reduce function through an iterator, which allows for

computation of lists that are too large to fit into local memory.

This structured dataflow allows Map invocations to be executed on different

systems to produce splits out of a single dataset by using a simple and scalable solution, as

shown in Figure 11.

Figure 11. – Topology of classical MapReduce framework [6]

A typical MapReduce framework may use a split and merge function, although

executed on the host CPU, whilst a CPU node takes over assigned Map and Reduce

functions.

2.4. The MapReduce programming model

| 17

2.4.2. Architecture

We take a closer look at the MapReduce architecture by analysing what’s inside a

typical MapReduce worker, in Figure 12.

Figure 12. – Original MapReduce architecture proposed by Dean and Ghemawat [7]

As we can see, the input data is divided into multiple splits to be processed in a Map

phase. The intermediate solution is stored on disk and given to a Reduce worker. The

output is stored into an output file, ready for post-processing.

The original MapReduce library splits the input files into chunks of 16 to 64

Megabytes (MB) and starts up a master worker that supervises multiple slave workers on

a cluster of machines that execute the Map and the Reduce tasks.

Each of the machines that perform a Map task, may also employ a by-user-specified

combiner function that merges multiple key-value pairs before sending them to a reduce

function. A combiner is used to do partial combining before applying a Reduce task and

avoid throughput dampening when finding a large amount of key repetitions. As also

explained in [7], the main difference between the combiner and the reduce function is the

output it produces: the combiner produces an intermediate output to a Reduce worker

while the reduce function itself produces an output file on the disk.

Chapter 2. Big Data

18 |

The MapReduce library is designed to work on large amounts of data and uses

therefore fault tolerant techniques. To do so, the master worker pings every worker

periodically; if no response is given after a certain time is elapsed, the Map or Reduce

worker is reset and becomes eligible for rescheduling.

In conclusion, the MapReduce framework is an easy to use, fault-tolerant, locality

optimized and load balancing solution. As pointed out by the authors, a large variety of

problems are easily expressed as a MapReduce computation, allowing this framework to

be used in a broad range of applications, such as in Google’s case data sorting, data mining

or machine learning.

MapReduce applications have a simple structure, and are defined by the Map and

the Reduce main function bodies. The Map function comprises the main translating

functionality, while the Reduce function includes the reduce criteria. Such applications

include Histogram (image processing), Matrix Multiplication, String Match, Linear

Regression, PCA, Kmeans and Word Count applications.

2.5. CONCLUSION

Big Data traffic processing and Data Mining tasks require solutions to produce

memory, latency and throughput efficient results, that ordinary systems cannot conceive.

Big Data itself can be defined by its volume, velocity and variety. Volume, due to the sizes

of the datasets; velocity, as the data needs to be processed on par of it being received and

sent to the next node; variety, since the datasets are heterogeneous and comprised of

multiple different sources, such as audio, video, text and any other unstructured data.

A processing framework for Big Data is the MapReduce programming model, which

takes up the task of translating (mapping) the data for it to be processed by simple criteria

(reduced). The original MapReduce implementation is fault-tolerant, load balancing,

memory optimized and easily programmable.

| 19

Chapter 3. XILINX ZYNQ ALL PROGRAMMABLE SOC AND

HIGH-LEVEL DESIGN FLOW

In this chapter, we present the Xilinx Vivado design methodology that is used in this

thesis, as provided by Xilinx Inc. We start by briefly describing the Xilinx Zynq-7000 AP SoC

ZC706 Evaluation Kit used for this MapReduce implementation, its architecture and

underlying elements

We follow up with the employed design flow to develop C/C++ based IP blocks,

hardware platform creation and its use on FPGA’s, which can be found in the Xilinx High-

Level Design Methodology. To do so, we use Xilinx Vivado for hardware platform design,

Vivado HLS for custom IP block design and Xilinx SDK for hardware-software integration

and application definition. The latter is also used for final validation and platform

parameter measurements.

We also provide the global design flow, from the most basic IP block and platform

design to its final validation phase.

3.1. XILINX ZYNQ-7000 ALL PROGRAMMABLE SOC

As every AP SoC out of the Xilinx Zynq-7000 series, this type of SoC is comprised of

two main architectural blocks: Processing System and the Programmable Logic. The PS is

bases on two ARM Cortex-A9 MPCores which works up to 1 GHz (dependant on the model)

[26], while its PL is based on the 7 series FPGA technology, designed with CMOS technology

of 28 nm. We also find multiple transceptors that allow for a large variety of flexible

solutions [15], [27], [28]. The described architecture can be seen in Figure 13.

Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow

20 |

Figure 13. – Zynq 7000 Block Diagram [27]

As shown in the previous figure, the PS comprises four main blocks [27]:

 Application Processor Unit (APU).

 Memory interfaces.

 I/O Peripherals (IOP).

 Multilayered ARM Advanced Microcontroller Bus Architecture (AMBA)

Advanced eXtensible Interface (AXI), or AMBA AXI interfaces for short.

The Zynq SoC owns a variety of IOP’s, such as Universal Asynchronous

Receiver/Transmitter (UART), Controller Area Network (CAN), Gigabit Ethernet (GigE),

Universal Serial Bus (USB), Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI) or

General Purpose Input-Output (GPIO). Some of these peripherals use a Direct Memory

Access (DMA) to allow for high speed applications.

3.1.1. The ZC706 Evaluation Kit

We use the Zynq-7000 AP SoC ZC706 Evaluation Kit, as shown in Figure 14.

3.1. Xilinx Zynq-7000 All Programmable SoC

| 21

Figure 14. – ZC706 Evaluation Board [15]

Similar as indicated in Figure 13, but summarized, the XC7Z045 AP SoC can be

described as follows in Figure 15 [27].

Figure 15. – ZC706 High-Level Block Diagram [27]

The PS section of the SoC, integrates a dual-core ARM Cortex-A9 MPCore that

connects to IOP’s, custom accelerators and peripherals (that reside in the PL section)

Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow

22 |

through AMBA AXI interfaces; the PS boots at power-up or reset and runs separately to the

PL [27].

3.1.2. Processing System (PS)

The APU integrates a dual-core ARM Cortex-A9, which works at 667 MHz on the

commercial model, 800 MHz on the extended model and up to 1 GHz on the industrial

model [26]. In this thesis, we use the extended model (XC7Z045-2FFG900I), which works

up to 800 MHz.

As extracted from [26], we also find an Accelerator Coherency Port (ACP) which

allows for coherent PL to CPU memory space access; the Level 1 cache (L1) employs 32 KB

(up to 32 KB per instruction) whilst the Level 2 cache (L2) holds 512 KB in total; both CPU

and PL have access to on-chip Random Access Memory (RAM) of 256 KB, although it is

designed for low latency access from the CPU.

In terms of interfaces, the ZC706 offers [26], [27]:

 2x 10/100/1000 tri-mode Ethernet MAC (TEMAC) peripherals.

 2x UART.

 2x CAN.

 2x I2C.

 2x SPI

 4x 32b GPIO.

One of the most important features of this SoC, is the 8-channel DMA that supports

easy and high throughput transfers between memory and peripherals. 4 of those channels

are dedicated solely to the PL communication. Additionally, some of the interfaces work

with built-in DMA, which include both USB interfaces, 2x Tri-mode Gigabit Ethernet and 2x

Secure Digital Input Output (SDIO) [26].

Lastly, in terms of memory storage and interfaces, the SoC has 1 GB Double Data

Rate 3 (DDR3) memory on both, the PL and the PS side, as well as two 128 Mb Quad-SPI

flash memories [26]. The DDR is accessible through four separate 64 bit AXI slave ports:

two dedicated to PL access, one to the ARM CPU through the L2 cache and a shared AXI

slave, employed by all of the AXI masters via the central interconnect [26].

3.1. Xilinx Zynq-7000 All Programmable SoC

| 23

3.1.3. Programmable Logic (PL)

The Zynq PL shares its characteristics with the 7 series FPGA’s. Specifically, the

ZC706 integrates the XC7Z045-2FFG900I device, which derives from the Kintex-7 FPGA [26],

[27], containing:

 218,600 Look Up Tables (LUTs).

 437,200 Flip Flops (FF)s.

 18 KB per Block Ram (BRAM), with a total of 1,090 BRAM’s (19.2 Mb).

 900 Digital Signal Processing (DSP) slices.

3.1.4. PS-PL Communication

To communicate software applications that reside in the PS section of the Zynq with

custom hardware of the PL, the Zynq SoC uses ARM AMBA AXI4. The usage of AXI interfaces

allows for easy IP integration and connection of custom logic solutions with PS managed

software ACP interfaces can be located as well. The PS-PL interconnection can be seen in

both, the previous Figure 13 and the following Figure 16.

Figure 16. – Zynq device simplified architecture [14]

By using AMBA AXI4 as the primary interface between PS and PL, we can create

flexible high-speed solutions with smooth and scalable interconnectivity. To transfer data

between memory and custom IP cores located in the PL, we use AXI-Stream interfaces

connected to a DMA, that connects back to the PS.

The primary AMBA AXI interfaces are [26]:

Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow

24 |

 2x AXI 32b Master and Slave ports.

 4x AXI 64b/32b Memory ports.

 1x AXI 64b ACP ports.

 16 interrupts.

Additional interfaces include four PS clock outputs and four PS reset outputs, a

Processor Configuration Access Port (PCAP), a Xilinx Analog to Digital Converter (XADC) and

a Joint Test Action Group (JTAG) interface for debugging purposes [26].

Lastly, the ZC706 allows multiple different configuration options [27]:

 Quad-SPI flash memory for PS configuration.

 PS boot from SD card for PS configuration.

 PL configuration through USB JTAG.

 PL configuration through an additional cable header and flying lead header

JTAG configuration ports.

3.1.5. Zynq-7000 Memory Map

The Zynq-7000 series supports a total of 4 GB of address space, organized as

presented in Figure 17.

Figure 17. – Zynq-7000 Memory Map [26]

Addresses 0x4000_0000 and 0x8000_0000 are reserved for AXI slave ports that

allow for easy PL-PS communication and data transfer. Starting at address 0xE000_0000

we find the already mentioned IOP devices. Addresses higher than 0xF000_0000 are

reserved for other applications such as AMBA Advanced Peripheral Bus (APB) or Quad-SPI.

3.2. Xilinx HighLevel Design Flow

| 25

It is crucial to understand the Zynq address space about designing, modifying or debugging

applications on a designed hardware platform.

3.2. XILINX HIGHLEVEL DESIGN FLOW

The tools and environments used in this work, such as the Vivado Design Suite,

utilizes the High-Level Design Methodology, a set of practices put in place to describe a

clear and straightforward design methodology for hardware-software solutions on AP

SoC’s and devices [28], [29]. In short, it describes a design flow that guides the designer

through multiple design rules and methods that ease up the entire process and tries to

achieve the design goals as quickly and efficiently as possible [29].

3.2.1. Xilinx Vivado and SDK

Both Xilinx Vivado and Xilinx Vivado HLS are comprised in the Vivado Design Suite,

and employ the mentioned methodology, which proposes a design flow that can be

summarised in Figure 18.

Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow

26 |

Figure 18. – Vivado Design Suite High-Level Design Flow [30]

Vivado employs a platform design process based on IP blocks, which are extracted

out of Xilinx’s IP catalog. The mentioned IP blocks can be either custom designed (C-Based

design with High-Level Synthesis) or a standard Xilinx IP, if the interfacing between these

blocks happens with Vivado supported interfaces or protocols, such as AMBA AXI.

Once the system description is complete, its RTL is synthesized maintaining user

defined constraints into a netlist that allows the placement of the platform onto the desired

AP SoC, which is the implementation phase and the final stage of the Vivado based platform

design.

The hardware platform is given an application by using the Xilinx Software

Development Kit (SDK). In this SDK, the user instantiates the designed hardware interfaces

and creates a Board Support Package (BSP) that communicates the hardware with the

3.2. Xilinx HighLevel Design Flow

| 27

chosen SoC. The SDK is used to define the software that ultimately governs the instantiated

hardware, manage the processor and its busses, the clock, reset and interrupt signals and

initialize the RAM settings. Conclusively, the SDK defines the application that runs the

entire system.

Verification, debugging and performance measurements are executed by using the

SDK in conjunction with the Vivado implementation results. The design flow concludes once

the systems behaviour and performance is validated.

3.2.2. Xilinx Vivado HLS

Vivado HLS main task is the translation, optimization and implementation of C/C++

or SystemC algorithmic description [31] (Figure 19).

Figure 19. – Vivado HLS Design Flow [31]

The Vivado HLS inputs are of three types:

 the behavioural description (in C/C++, SystemC or OpenCL),

 the testbench that evaluates the behavioural code and

 a constraint or directives file that tunes and optimizes the design.

The design flow converts these inputs into a functional IP block. The algorithmic

description is translated into Register Transfer Level (RTL) language through C Synthesis

and its behaviour co-simulated with the source code. If both, synthesis and co-simulation

results are satisfactory, by complying with latency, throughput and utilization constraints

Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow

28 |

for the selected SoC, the IP block is implemented and included in the Xilinx IP catalog, ready

to be used in the Vivado Design Suite for platform design.

3.3. CONCLUSION

This thesis employs the Xilinx Zynq-7000 AP SoC ZC706 Evaluation Kit, which

integrates a 7-series FPGA with two ARM Cortex-A9 MPCores at 800 MHz . The ZC706

device allows for custom hardware IP solutions on the PL side integrated with a custom

software solution on the PS side, in conjunction with a large variety of peripherals and

interfaces that allow for high-performance solutions in a large variety of fields.

By using hardware provided by Xilinx, we are able to apply the Xilinx High-Level

Design Flow, that allows for C/C++ and SystemC algorithmic descriptions to be

implemented as hardware IP’s on our device. This design flow’s core is the Vivado Design

Suite, that ranges from the algorithmic description, to the IP modelling, hardware platform

design and the hardware-software integration.

| 29

Chapter 4. PROPOSED SOLUTION

Now that the MapReduce architecture has been presented in Chapter 2, as well as

the Xilinx Zynq AP SoC in Chapter 3, in this chapter we introduce the reader to the proposed

solution, which defines a MapReduce worker framework on a Xilinx Zynq AP SoC.

First, we cover multiple initial design considerations to understand the design space

constraints and limitations. Then, we define the global dataflow architecture to later go

into the concrete definition of the multiple blocks that confine the whole solution.

4.1. INITIAL CONSTRAINTS AND CONSIDERATIONS

Before any solution proposition can be explained, multiple design choices need to

be made.

First and foremost, the hereby presented solution focuses on producing a simple

MapReduce worker, based on a typical MapReduce framework. This worker contains

multiple entities, such as a Map and a Reduce function, although it is evident that multiple

instantiations of both are allowed.

The main objective is to set the groundwork for a generic high-performance

framework, as it is MapReduce, for FPGA based SoC environments. By doing so, we create

a framework whose application can be substituted with any other desired functionality,

and therefore change the area of interest in which this thesis is employed.

We chose to define a MR worker that applies a Word Count application, since it is

simple and therefore shortens design time for the IP blocks that ultimately shape the

accelerator core. A Word Count application takes a string input, such as a file, maps out the

Chapter 4. Proposed solution

30 |

words that exist in the file into Key-Value pairs and merges all the pairs that share the same

Key by increasing the value counter, as presented in Figure 20.

Figure 20. – Simple Word Count application using a MapReduce framework

With regards to memory considerations, since we are interested in the design of a

simple MR worker whose parameters and performance are subsequently studied to justify

whether it is an efficient solution, we concluded that the unformatted data must be

handled by declaring it previously in memory, and sent to the accelerator through a DMA.

The formatted data is then being given back by the same means, employing a DMA. The

DMA itself is handled by interruptions and not by polling, since the latter may produce

additional software overhead and therefore alter the latency of the accelerator core.

Regarding the interfaces of our IP blocks, we use AMBA AXI4 Stream for the data

transfer interfaces, since it allows for custom width data transmission between IP blocks

and easy protocol AXI protocol handling [26].

With respect to performance measurements, we evaluate the quality of the worker

by its PL footprint and its computation latency and throughput.

4.2. MAPREDUCE DATAFLOW ARCHITECTURE

Regardless of its ultimate application, the proposed MR worker produces a given

output by consuming an input file. Both those tasks require an initial splitting to happen

and a final merging of the output products to produce the complete result. Combining

these tasks with the map and reduce function, we propose an architecture such as shown

in Figure 21.

4.2. MapReduce dataflow architecture

| 31

Figure 21. – MapReduce worker architecture – Proposition

The number of Map-Reduce pairs, which from now on are called a ‘line’ or

‘MapReduce line’, is arbitrarily chosen to be 8 at the beginning of its design. Although some

implementations may favour implementing the Split and Merge function on the software

side of the solution, to do so, it is required to redirect the Map and Reduce streams back

to the PS side and into the memory, which requires a DMA access. Since this is a difficult

task, as we have limited available streaming interfaces to go back from the PL to the PS,

and software functionalities usually have lower throughput than their hardware

counterpart, we decided to implement the Split and Merge stages as separate hardware IP

blocks.

The proposed solution takes advantage of a dataflow architecture, where a splitting

function divides the main task into multiple splits that are processed in a parallel fashion.

Moreover, such a solution does not retain processed information until the entire task is

done, but sends data to the next function whenever possible to reduce latency and increase

throughput.

Out of all the presented functions (Split, Map, Reduce, Merge), only the Reduce

function requires the data to be fully stored into memory to merge the KV pairs, whereas

the Split, Map and Merge do not require to store data. By storing information in memory,

we are severely throttling throughput and producing a higher memory footprint. For that

reason, we are not concerned about the existing of a shuffle/sort stage between the Map

and the Reduce function, as presented in a typical MapReduce framework [7], [17].

Chapter 4. Proposed solution

32 |

4.2.1. Split

The splitters main task is that of dividing the input file into roughly same sized splits

so that the workload of each MR line is balanced. By using a Word Count application, the

splitter must be cautious in dividing the incoming stream, since it is not allowed to partition

words because it would destroy useful information. A splitting example can be found in

Figure 22.

Figure 22. – Data splitting example

To produce a high-throughput implementation of a MR worker, the splitter must,

not only divide the stream evenly over the available lines, but also send valuable

information to a line as soon as possible. Thus, if we were to split 1 KB of data over 5 lines,

the splitter is not allowed to maintain a line idle, as for example in Figure 23.

Figure 23. – Inefficient data splitting example

As we can see, while the splitter transmits a fifth of the total data, any other line

remains idle, which is inefficient since one of the MR lines could potentially start mapping

the output. We therefore chose a dataflow friendly approach, as presented in Figure 24.

4.2. MapReduce dataflow architecture

| 33

Figure 24. – Dataflow friendly data splitting

We propose a splitting function that divides the incoming data evenly over the given

MR lines and sends valuable information to a line whenever data is ready to increase

throughput. We do this by producing data splits of smaller proportions; i.e., for an input

file of a given size X, the split function must swap interfaces once for every data split of size

Y, where Y ≪ X. By doing so, none of the Map-Reduce lines are idle during the splitting of

the input data.

For our purposes, we arbitrarily chose the data to be split into 25 bytes′ segments.

This means, that the Split function partitions the data and sends it to the current Map

function once a non-alphabetic character is found after crossing a 25-Byte threshold.

4.2.2. Map

The mappers key role is that of translating the incoming dataset into useful Key-

Value pairs (Figure 25).

Figure 25. – Map example

Chapter 4. Proposed solution

34 |

Some MapReduce implementations, introduce a combiner function to their designs

to merge KV pairs in earlier stages, such as presented in [17], [18], [20] and the original

MapReduce proposal [7]. To simplify each of the functions main body and boost its

efficiency, we decided not to include such a merging function and leave it to the reduce

phase to complete merge Key-Value pairs.

4.2.3. Reduce

The Reduce function, concerns itself with comparing each value of an incoming KV

pair. Reduce functions can have multiple criterions to do so, such as only merging all the

data or only those with a previously given Key. For our case, we decided to make a Word

Count application that merges all the data by a basic criterion of word repetition (Figure

26).

Figure 26. – Reduce example

The output of the reduce phase is a dataset comprised of KV pairs that do not have

Key repetitions and are ready to be merged into an output file or stream.

4.2.4. Merge

The merging phase is the last of the MapReduce stages, and combines all the lines’

output to create the complete result of the Word Count task (Figure 27).

4.3. Streaming interfaces considerations

| 35

Figure 27. – Merge example

The output stream of the Merge phase is copied into a file for later analytic use.

4.3. STREAMING INTERFACES CONSIDERATIONS

As, already mentioned, the proposed solution employs AMBA AXI4 interfaces to

easily stream data between IP blocks. Although AXI4 provides the main protocol for

transparent communication, there is a need to establish an understandable and easy

protocol to share Key-Value pairs between and inside IP blocks. To do so we established a

simple by-tab division of keys and values, as shown in Figure 28.

Figure 28. – Key-Value streaming protocol

After every Key (an english word) we find a horizontal tab character (‘\t’ or ASCII

code 9), and the upper and lower part of its value. With this KV streaming protocol,

functions can easily understand KV pairs throughout the whole worker, which is that, if in

a given Key-Value stream a tab character is found, we are certainly at the end of a Key and

at the start of both the Value bytes.

4.4. IP BLOCK DEPTH AND PRELIMINARY WORKER FOOTPRINT

The main MapReduce functions that are implemented in the presented worker

must consider a given data input depth and width; depth, to employ large enough FIFOs (if

needed) and width, as in data type width.

Chapter 4. Proposed solution

36 |

Since, with exception to the merge phase, all the other functions require a Byte-by-

Byte processing to distinguish and compare words out of the input file, we decided that the

streaming interfaces between all the IP blocks have an 8-bit width to eliminate any data

type conversion derived latency. We do not hide that a larger standard width (64 bit for

example) could increase throughput and overall system performance, but an 8-bit width

stream throughout the whole design allows for easier and faster integration as data type

conversion must not be made at any stage.

We decided to allow for a maximum of 8 KB to be introduced to a Split function,

which limits the worker to a maximum work of 8 KB. This means that the input stream

related FIFO that will be inferred for the Split function, has a maximum depth of 8 KB, and

although we can send data into this FIFO unlimitedly (if the FIFO is being read to avoid

overflow) subsequent IP blocks such as the Reduce IP, must have buffers and buffer depths

previously allocated, as they need the data to be stored in memory to operate with it. If

this wasn’t the case, it would be possible to have an indefinite data stream through the

whole MapReduce worker and therefore no data size limit on the proper.

The splitter function itself won’t store information, therefore it should not have any

memory footprint, since it passes information straight through by splitting the text in

between two English words. Seeing that we have up to 8 MR lines, we split the 8 KB into 1

KB lines and merge them back together at the end.

The Map function won’t have any memory footprint either, since does not register

data, sends whole English words to the Reduce phase and it does not consider any

character that is not alphabetic (commas, spaces, stops, etc.…). The map function has

therefore an input depth of 1 KB as well as a 1 KB output depth.

The Reduce function requires a relatively large memory footprint. Starting off, by

allowing 1 KB of data, the function needs to store at least 500 keys in the worst-case

scenario, as well as additional storage for each value, which should have at least the length

of a 16-bit integer to cover the worst-case possibilities (up to a value of 65,536). We also

must consider that the KV protocol described in section 4.4 introduces additional

information on top of the 1 KB data input stream. If we consider that 1 KB of data allows

for a maximum of 500 1-Byte keys, and that for every Key + tab character (2 bytes) the

4.5. Conclusion

| 37

Reduce block introduces a 16-bit value (2 bytes), for every 1 Byte input key the output

produces 2 additional bytes of valuable data (Figure 29).

Figure 29. – Key-Value streaming protocol width

Therefore, if 1 KB data produces 500 keys at most, the output data depth is of 2 KB.

Lastly, if the Reduce function outputs a maximum of 2 KB of data, the Merge

function must accept up to 8 lines of 2 KB and merge them together, outputting 16 KB of

data.

In summary, the presented MapReduce worker accepts 8 KB input data on the Split

side (8 streams of 1 KB) and outputs up to 16 KB (8 streams of 2 KB) of valuable data on

the Merge side.

4.5. CONCLUSION

In this chapter, we present the proposal for the MapReduce based hardware

accelerator. This includes the design constraints, the underlying IP blocks, interface

considerations and final parameters.

The IP block designs represent the main MapReduce stages for a simple application,

which are the data Split, Map, Reduce and Merge phases. While the Reduce IP block stores

data in memory for its processing, the Split, Map and Merge blocks do not require data to

be stored and have therefore a simple behavioural code.

With regards to the architecture, we chose AMBA AXI Stream interfaces and up to

8 Map-Reduce pairs (or lines). The interfaces’ width is of 8 bits, as the IP blocks require

Byte-by-Byte processing of alphabetic characters.

By interconnecting the different stages of the processing architecture, we create a

so-called MapReduce worker, whose capacity has been chosen to be of 8 KB, as the Reduce

stage requires limited memory storage. With such an input depth, the worker produces

16 KB of valuable data.

| 39

Chapter 5. HARDWARE PLATFORM DESIGN

In this chapter, we dive into the hardware design process that follows the solution

considerations of Chapter 4. As multiple design choices have been exposed in the previous

chapter, we describe each designed IP block and its performance with respect to the

already described functions. We also comment its main characteristics (I/O width and

depth), it’s HLS co-simulation latency and derived throughput and lastly its programmable

logic footprint.

Since the IP blocks are considered custom logic solutions, we then follow with the

hardware platform design where we combine our custom logic with standard Xilinx IP

blocks to create a complete hardware design that connects the Processing System with our

solution.

After each sub-section (custom IP design and platform design), we combine the

derived results to easily understand the solutions product.

5.1. VIVADO HLS CONSIDERATIONS

Vivado HLS requires that an algorithmic description surpasses 4 design phases in

order to create a functional IP block [32]:

 C simulation, which tests the C/C++ description by using a testbench

designed by the user.

 Synthesis, or High-Level Synthesis, which translates C/C++ code into RTL and

reports estimates of the maximum operational frequency of the IP block and

its logic footprint in BRAM’s, DSP’s, FF’s and LUT’s. Since algorithmic

Chapter 5. Hardware platform design

40 |

descriptions are translated into RTL code, we call this process High Level

Synthesis.

In Vivado HLS, synthesis results are not reliable in most cases with respect

to working frequency estimation, since the generated RTL has not been

converted into a device-specific netlist yet and does not take the SoC’s FPGA

layout into consideration. Therefore, synthesis results may vary with respect

to implementation results (maximum frequency) and should only be used to

tune the algorithmic description and to optimize processing latency and

logic footprint.

 Co-simulation, where an RTL wrapper is set on top of the C/C++ description

to execute the testbench and compare both the software + RTL wrapper and

the pure RTL description results. This phase reports back the maximum

latency of the RTL description.

As opposed to synthesis, where results may vary with respect to the final

implementation phase, we have found that the co-simulation latency

(expressed in cycles) agrees with the latency of the final implemented

design.

 Implementation, which corresponds to the logic synthesis of the design. As

opposed to High-Level Synthesis, this phase employs the RTL design and

produces logical and physical transformations, transforming a logical netlist

and constraints into a placed and routed design, ready for bitstream

generation.

To make initial throughput measurements of each block (Vivado HLS does not

provide such an estimation) with respect to the processed stream, we rely on co-simulation

latency report (in cycles) and a maximum PL working frequency of 250 MHz, which implies

a 4 ns clock cycle.

The IP blocks main behavioural remains unchanged with respect to the proposed

solutions, maintaining 8-bit wide AMBA AXI Stream interfaces.

In the following sections, we discuss IP block input and output depths, as we are

utilizing data streams between blocks to communicate information. When an IP block is

modelled in Vivado HLS with a stream at some of the communicating ends (input or output)

5.2. Synthesizable functions library

| 41

a FIFO is inferred at that end. We must then stress that, the so-called depth of the input or

output refers to the depth of the inferred FIFO, which does not stop us from sending an

amount of information that surpasses the FIFOs depth to the mentioned IP block to process

it, if it is read. What does limit the IP blocks capacity is the size of the registering buffers

that we have included to copy the information out of the stream into a register that allows

us to process the data; in all the cases, the FIFO depth is dependent on modelled size for

this registry.

All the modelled IP blocks have been designed considering that they are separated

through external FIFOs. We must stress that, although it may seem redundant, this is an

effort to decouple CLK signals and allowing for a dataflow friendly architecture and increase

the maximum working frequency as it reduces fan-out.

5.2. SYNTHESIZABLE FUNCTIONS LIBRARY

Vivado HLS does not support some standard C/C++ constructs and functions, such

as tolower(), toupper(), isalnum(), pointers to functions or recursive functions, as those

constructs are either not understood by the high level synthesis tool or cannot be

represented in RTL logic [31]. Since we also employ multiple functions to present

accordingly the formatted text results of every IP block, we developed a simple ad-hoc

synthesizable functions library, or synthlib, that contains synthesizable versions of standard

functions, as well as additional functions that handle our data buffers.

Some of the contained functions are:

bool sl_isalnum(char arg);
bool sl_isdigit(char arg);
bool sl_isalpha(char arg);
char sl_tolower(char arg);
char sl_toupper(char arg);
void sl_strncpy(char arg_dest[DEPTH], char arg_src[DEPTH]);
void sl_axis_strncpy(ap_axis< WIDTH, 1, 1, 1> * arg_dest, char arg_src[W_DEPTH]);
bool sl_strncmp(char arg_a[DEPTH], char arg_b[DEPTH]);
int sl_length(char arg[DEPTH]);
void sl_print(ap_uint<WIDTH> arg);
void sl_print(kv_pair * arg, int arg_length);

An example is shown by the argument of the sl_isalpha() function:

/**
 * @brief Returns if the presented character is alphabetic
 *

Chapter 5. Hardware platform design

42 |

 * @param arg the evaluated character
 * @return 1 if the character is an uppercase or lowercase alphabetic
 * character, 0 otherwise
 */
bool sl_isalpha(char arg) {
 return ((arg >= 65 && arg <= 90) || (arg >= 97 && arg <= 122));
}

By using a custom library for such simple tasks, we are solving two main problems:

 The synthesizability of standard functions.

 Function latency, as we are now in control of the behaviour of the function,

and it allows us to optimize runtime latency of any given IP block.

We also simplified code by using pre-processor directives for common

functionalities, as presented in the following code.

#define shr(x) x >>= 8
#define shl(x) x <<= 8

#define shr_sub(x,a) shr(x); x - a
#define shr_add(x,a) shr(x); x + a
#define shl_sub(x,a) shl(x); x - a
#define shl_add(x,a) shl(x); x + a

#define copy_shr(a,b) a = b; shr(b)
#define copy_shl(a,b) a = b; shl(b)

#define get_shr(a,b) a = b >> 8
#define get_shl(a,b) a = b << 8

#define break_if_list_end(a) if (a >= list_size) break
#define break_if_depth_end(a) if (a >= RED_IN_DEPTH) break
#define break_if_last() if (in_last == 1) break
#define break_if_null(a) if (a < 0) break
#define break_if_nl(a) if (a == '\n') break
#define break_if_tab(a) if (a == '\t') break

#define return_if_list_end(a) if (a >= list_size) return
#define return_if_depth_end(a) if (a >= RED_IN_DEPTH) return
#define return_if_last() if (in_last == 1) return
#define return_if_null(a) if (a < 0) return
#define return_if_nl(a) if (a == '\n') return
#define return_if_tab(a) if (a == '\t') return

#define read_key_at(i,a) a = list[i].key
#define read_val_at(i,a) a = list[i].val

#define assign_key_ptr_at(i,a) a = &list[i].key
#define assign_val_ptr_at(i,a) a = &list[i].val

Common functionalities include typical 8 bit shifts (shr() and shl()), breaking out

of a section or scope or simple but recurring actions such as retrieving a value out of a struct

(read_key_at(i,a)).

5.3. Tuneable parameters file

| 43

5.3. TUNEABLE PARAMETERS FILE

It is good practice, especially in developing large C/C++ solutions, to employ a

common parameters file, that allows finetuning of the parameters of our designs. These

include the width of AMBA AXI Stream signals, the depth of buffers, data type definitions,

Key-Value constructs or global variables.

A snippet of our parameters file is presented as follows:

#define RED_IN_WIDTH 8 // Maximum Reduce input width
#define RED_IN_DEPTH 1000 // Maximum Reduce input depth

#define RED_OUT_WIDTH 8 // Maximum Reduce output width
#define RED_OUT_DEPTH 2500 // Maximum Reduce output depth

#define W_2 1
#define W_4 2
#define W_8 3
#define W_16 4
#define W_32 5
#define W_64 6
#define W_128 7
#define W_256 8
#define W_512 9
#define W_1K 10
#define W_2K 11
#define W_4K 12

using namespace std;

struct kv_pair {
 ap_uint<AXIS_WIDTH> key;
 ap_uint<W_1K> val;

 kv_pair() {
 this->key = 0;
 this->val = DEFVAL;
 }
 void build(ap_uint<AXIS_WIDTH> key, int val) {
 this->key = key;
 this->val = val;
 }
 void build(ap_uint<AXIS_WIDTH> key) {
 this->key = key;
 this->val = DEFVAL;
 }
 void build(int val) {
 this->key = 0;
 this->val = val;
 }
};

extern int l_size;
extern kv_pair list[LIST_DEPTH];

extern int alph_indexes[26][LIST_DEPTH];

Chapter 5. Hardware platform design

44 |

In the presented snippet of the high-level model, we defined the Reduce function

interface width and depth, as well as the Key-Value construct that we are using throughout

the whole design.

Using a common parameters file allows for fast and easy IP block modelling where

common parameters must be shared, such as an AXI Stream width.

5.4. AMBA AXI4 STREAM DRIVER

During the development of this and previous theses, we have had multiple

experiences using AMBA AXI4 Stream interfaces in C/C++ designs. Using this type of

algorithmic description for our IP blocks, requires us to manage AXI Stream fields to

communicate accordingly our custom IP’s with standard Xilinx IP, as it is up to the designer

to drive the signals.

The AXI Stream (or AXIS for short) waveform, follows in Figure 30.

Figure 30. – Example of an AXI Stream waveform

The AXIS interface template is the following.

template<int D,int U,int TI,int TD>
 struct ap_axis{
 ap_int<D> data;
 ap_uint<(D+7)/8> keep;
 ap_uint<(D+7)/8> strb;
 ap_uint<U> user;
 ap_uint<1> last;
 ap_uint<TI> id;
 ap_uint<TD> dest;
};

As defined in [33], by using a TDATA field of an 8-bit width, TKEEP has a width of 1

bit, which has to be asserted to indicate that the associated TDATA must be processed as

5.4. AMBA AXI4 Stream driver

| 45

part of the data stream. If TKEEP is 0, the associated TDATA is considered null bytes, and

can be removed from the data stream.

Lastly, with regards to the TLAST field, all our custom IP blocks employ an output

AXI4 Stream. To indicate the streams boundary, the custom IP’s send a terminating Byte

(NULL) with the TLAST field asserted, indicating that the transmission has ended. We chose

the last Byte to not carry information in the data field, as typical character strings are NULL

terminated. By agreeing on a common usage of the TLAST field between IP blocks, we

facilitate a transparent communication between IP’s, making them less susceptible to

errors.

Although the designer does not have access to the TREADY and TVALID signals, it is

crucial to employ the TDATA, TKEEP and TLAST fields correctly to produce seamless

communications between custom and standard IP blocks. To solve that problem, we wrote

functions that assert and deassert the axis fields correctly.

First iterations of such a signal driver was written by using standard C/C++ function

constructs. Despite it being functional, it produced function call overhead and increased

co-simulation latency, which compelled us to re-write those functions as directives, as

presented in the following snippet:

/** Input registers **/
ap_uint<WIDTH> in_data = 0;
ap_uint<1> in_keep = 0;
ap_uint<1> in_strb = 0;
ap_uint<1> in_user = 0;
ap_uint<1> in_last = 0;
ap_uint<1> in_id = 0;
ap_uint<1> in_dest = 0;

/** Output registers **/
ap_uint<WIDTH> out_data = 0;
ap_uint<1> out_keep = 1;
ap_uint<1> out_strb = 1;
ap_uint<1> out_user = 0;
ap_uint<1> out_last = 0;
ap_uint<1> out_id = 0;
ap_uint<1> out_dest = 0;

/** Stream read function **/
#define read_axis_unit(stream) \
(\
(in_data = stream->data, \
(in_keep = stream->keep, \
(in_strb = stream->strb, \
(in_user = stream->user, \
(in_last = stream->last, \
(in_id = stream->id, \

Chapter 5. Hardware platform design

46 |

(in_dest = stream->dest, \
(stream++, \
(void)0 \
)))))))))

/** Stream write function **/
#define write_axis_unit(arg, is_last, stream) \
(\
(out_data = arg, \
(out_keep = 1, \
(out_strb = 1, \
(out_user = 0, \
(out_last = is_last, \
(out_id = 0, \
(out_dest = 0, \
(stream->data = out_data, \
(stream->keep = out_keep, \
(stream->strb = out_strb, \
(stream->user = out_user, \
(stream->last = out_last, \
(stream->id = out_id, \
(stream->dest = out_dest, \
(stream++, \
(void)0 \
))))))))))))))))

It is essential to first declare the input and output registers, allowing the stream

driver to function properly. By using such an approach, the designer must only provide a

pointer to the axis streams on either the reading or writing side. Aside from the stream

pointer, the output function requires to specify the TDATA and TLAST value.

We declared both read and write functions as read_axis_unit() and

write_axis_unit(), as the designer might prefer reserving the names read_axis() or

write_axis() for more complex functions, that read or write the whole stream. Such case

is presented in the following Reduce IP block, where the output stream is sent without

stopping.

5.5. IP BLOCK MODELLING

In this section, we discuss the Vivado HLS implementation for each of the main IP

blocks: Split, Map, Reduce, Merge.

5.5.1. Split

The resulting Split IP block has 9 AXI Stream interfaces, 1 of which is the input

stream and the other 8 are the output streams, such as presented in Figure 31. The input

depth is of 8 KB and the output depth for each line is of 1 KB, with an I/O width of 8 bits on

both ends.

5.5. IP block modelling

| 47

Figure 31. – Split IP block

Its behavioural is shown in the following code.

ap_uint<2> wc_split(
ap_axis<SPLIT_IN_WIDTH, 1, 1, 1> * instream,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream0,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream1,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream2,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream3,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream4,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream5,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream6,
ap_axis<SPLIT_OUT_WIDTH, 1, 1, 1> * outstream7) {

 /** OMITTED: Variable declaration and initialization **/

 while (in_last != 1) {
 /** Passthrough outstream0 **/
 while (is_open_0 && in_last != 1) {
 over_threshold = i_split0 > cur_threshold;
 i_split0++;

 /** Read the instream and write it to the current outstream **/
 read_axis_unit(instream);
 write_axis_unit(in_data, 0, outstream0);
 out0++;

 /** OMITTED: Check if in_data was alphabetic **/

 if (over_threshold == 1 && in_isalpha == 0) {
 /** Break to allow for interface swapping **/
 i_split0 = 0;
 break;
 }

 if (out0 == SPLIT_OUT_LAST) {
 is_open_0 = 0;
 out0++;
 } else if (out0 >= CRITICAL_RANGE) cur_threshold = 1;
 }

 /** OMITTED: Passthrough oustream1 **/
 /** OMITTED: Passthrough oustream2 **/
 /** OMITTED: Passthrough oustream3 **/
 /** OMITTED: Passthrough oustream4 **/
 /** OMITTED: Passthrough oustream5 **/
 /** OMITTED: Passthrough oustream6 **/
 /** OMITTED: Passthrough oustream7 **/

 /** If all the interfaces are closed, end the operation **/

Chapter 5. Hardware platform design

48 |

 if (!(is_open_0 && is_open_1 && is_open_2 && is_open_3 && is_open_4 &&
is_open_5 && is_open_6 && is_open_7)) break;
 }

 /** OMITTED: Send a NULL with TLAST toggled to all the outstreams **/
 return 0;
}

To efficiently divide the incoming stream into 8 MR channels, numbered from 0 to

7, the split IP block reads a certain number of bytes out of the in-stream and copies it to

the first interface. Once a 25 bytes’ threshold is crossed, the splitter checks whether a word

has finished (the finding of a non-alphabetic character at that same position). If this is not

the case, the splitter continues copying the stream to the output interface until an end is

reached. If the latter is the case, the stream is switched to the next open interface, which

is adjacent to the current (interface 0 swaps to interface 1, interface 1 swaps to interface

2, and so forth, while interface 7 jumps back to interface 0). Such a function flow is shown

in Figure 32.

5.5. IP block modelling

| 49

Figure 32. – Split IP block behavioural

Every MR line has a maximum depth of 1 KB. Thus, the split function keeps track of

the number of bytes copied and limits its maximum to 999 bytes, such that, in the event of

reaching the maximum line depth, the last Byte (1.000) is a NULL with the last AMBA AXI

field driven high (‘1’), to indicate the end of a stream. Regardless of how many data are

copied into each stream, once the incoming stream finishes, the output interfaces send a

NULL with the last field driven high.

The splitters threshold varies throughout the copying process: if an interface is

closed, we understand that we are reaching the end of an 8 KB input and that one line is

already saturated. As the end of the incoming stream approaches, to fit whole words into

Chapter 5. Hardware platform design

50 |

the output interfaces, the splitter reduces the maximum Byte threshold from 25 to 1, which

means that the stream is swapped after the ending of each word, and closed if its full.

5.5.2. Map

The Map IP block has 2 AXI Stream interfaces, 1 of which is the instream and the

other is the output stream, as presented in Figure 33.

Figure 33. – Map IP block

Its behavioural is shown in the following code.

ap_uint<2> wc_map(
ap_axis<MAP_IN_WIDTH, 1, 1, 1> * instream,
ap_axis<MAP_OUT_WIDTH, 1, 1, 1> * outkey) {

 /** OMITTED: Variable declaration and initialization **/
 read_axis_unit(instream);

 in_data &= 0xdf; // To upper
 in_isalpha = in_data >= 65 && in_data <= 90;

 while (1 < 2) {
 break_if_last();
 switch (state) {
 case IN_WORD:
 /** If in_data is alphabetic, send it. Otherwise, send a TAB
char **/
 if (in_isalpha == true) {
 write_axis_unit(in_data, 0, outkey);
 } else {
 state = NOT_IN_WORD;
 write_axis_unit('\t', 0, outkey);
 }
 break;

 case NOT_IN_WORD:
 /** If in_data is alphabetic, send it and swap state to
IN_WORD**/
 if (in_isalpha == true) {
 state = IN_WORD;
 write_axis_unit(in_data, 0, outkey);
 }
 break;

 default:
 break;
 }

5.5. IP block modelling

| 51

 read_axis_unit(instream);

 in_data &= 0xdf; // To upper
 in_isalpha = in_data >= 65 && in_data <= 90;
 }

 /** Send a NULL with TLAST toggled **/
 write_axis_unit(0, 1, outkey);

 return 0;
}

The mapper function remains widely unchanged with respect to its original

proposal. The IP block copies the input stream to the output, if it is an alphabetic character.

If it is not, it sends a tab character (‘\t’, ASCII code 9) to denote the end of a key to the

mapper, and iterates to the next alphabetic character. Such a workflow is presented in

Figure 34.

Figure 34. – Map IP block behavioural

Chapter 5. Hardware platform design

52 |

Since the Map function does not employ any combiner (an element described in

section 2.4 The MapReduce programming model), at this stage we are certain that every

emitted key has a value of 1. This allows us to omit its sending to the reducer, since all the

keys arrive with a value of 1. By doing this we spare communication latency, as we do not

send any values to the next stage. The reduce function itself takes up the task of combining

Key-Value pairs.

5.5.3. Reduce

The Reduce IP employs the same interface configuration as the Map block, as

presented in Figure 35. The interface width is of 8-bit on both ends, with a 1 KB depth on

the receiving end and 2 KB depth on the emitting end.

Figure 35. – Reduce IP block

Its behavioural is shown in the following code.

ap_uint<2> wc_reduce(
ap_axis<RED_IN_WIDTH, 1, 1, 1> * instream,
ap_axis<RED_OUT_WIDTH, 1, 1, 1> * outstream) {

 /** Variable declaration and initialization **/

 /** Clear the legal indexes length buffer **/
 for (i = 0; i < 26; i++)
 indl[i] = 0;

 while (1 < 2) {
 /** READ AXIS STREAM – START **/

 /** OMITTED: Reset counters and variables **/

 while (1 < 2) {
 i_arg_lower2 += 8;

 /** Read the incoming stream and break if TLAST is toggled or TDATA
is a TAB character (end of a key) **/
 read_axis_unit(instream);
 break_if_last();
 break_if_tab(in_data);

 /** Add the character to the complete word (key_tmp0) **/
 key_tmp0 |= in_data_tmp1;
 in_data_tmp1 = in_data;

5.5. IP block modelling

| 53

 in_data_tmp0 |= in_data_tmp1 << i_arg_lower0;
 key_tmp0 = in_data_tmp0;

 /** Advance the counter in a PIPELINE friendly fashion **/
 i_arg_lower0 = i_arg_lower1;
 i_arg_lower1 = i_arg_lower2;
 }
 key = key_tmp0;
 /** READ AXIS STREAM – END */

 /** I'm substracting 65 to the first and second character (-0x4141). This
way, we bring an 'A' down to the value 0, and 'Z' to 25 */
 break_if_last();

 key_tmp = key - 0x4141;

 char0 = (char) key_tmp;
 shr(key_tmp);
 char1 = (char) key_tmp;

 break_if_null(char0);

 /** If the second character is inexistent, we register the word’s legal
index into * position 25 **/
 if (char1 < 0) char1 = 25;

 index_ptr_pos0 = indexes[char1][0];
 index_ptr_pos1 = indexes[char1][1];
 index_ptr_pos2 = indexes[char1][2];
 ind_size = indl[char1];

 /** With the legal indexes retrieved, we start reading the registry’s content
and * search for the current key **/
 i3_0 = indexes[char1][i + 3];

 read_key_at(index_ptr_pos0, reg_key);
 read_val_at(index_ptr_pos0, reg_val);

 /** Increase the value register, to use it later, in
 /** Increase the value reg, to use it later in case the key is found **/
 reg_val++;

 /** Pre-register keys and values to ease list iteration **/
 assign_val_ptr_at(index_ptr_pos0, reg_new_val);

 assign_key_ptr_at(index_ptr_pos1, reg_key_ptr0);
 assign_val_ptr_at(index_ptr_pos1, reg_val_ptr0);

 assign_key_ptr_at(index_ptr_pos2, reg_key_ptr1);
 assign_val_ptr_at(index_ptr_pos2, reg_val_ptr1);

 assign_key_ptr_at(list_size, reg_new_key);

 for (; i < ind_size; i++) {
 /** Read the legal section **/

 i3_1 = indexes[char1][i + 4];

 if (reg_key == key) {
 /** If the key is found, assign its new value **/
 result = 1;
 (*reg_new_val) = reg_val;
 break;
 }

Chapter 5. Hardware platform design

54 |

 /** Advance all the pointers, counters and registers **/
 reg_new_val = reg_val_ptr0;

 reg_key = *reg_key_ptr0;
 reg_val = *reg_val_ptr0 + 1;

 reg_key_ptr0 = reg_key_ptr1;
 reg_val_ptr0 = reg_val_ptr1;

 assign_key_ptr_at(i3_0, reg_key_ptr1);
 assign_val_ptr_at(i3_0, reg_val_ptr1);
 i3_0 = i3_1;
 }

 if (result == 0) {
 /** If we didn’t find the key in the registry, we append it **/
 *reg_new_key = key;
 indexes[char1][ind_size] = list_size;
 indl[char1]++;
 assign_key_ptr_at(list_size++, reg_new_key);
 }
 }

 /** WRITE AXIS OUTSTREAM – START **/

 /** OMITTED: Reset counters and variables */

 while (1 < 2) {
 /** Check if we’re over the lists maximum size */
 break_if_list_end(list_id0);

 list_id2++;

 cur_key = 0;

 /** Read current key and value into a register **/
 read_key_at(list_id0, cur_key);
 read_val_at(list_id0, cur_val);

 /** Clear current list key and value **/
 clear_key_at(list_id0);
 clear_val_at(list_id0);

 /** Sepparate the value into two bytes, in case it’s greater than 255 */
 cur_val_upper = cur_val.range(15, 8);
 cur_val_lower = cur_val.range(7, 0);

 /** Copy 1 Byte from the current word into a register and shift right **/

 copy_shr(arg0, cur_key);
 /** Copy 1 Byte from the current word into a register and shift right **/
 copy_shr(arg1, cur_key);

 while (1 < 2) {
 if (arg0 == 0) break;
 /** Copy 1 Byte and shift right **/
 copy_shr(arg2, cur_key);
 /** Send Byte **/
 write_axis_unit(arg0, 0, outstream);
 /** Advance pre-registered data into current register **/
 advance_reg(arg0, arg1, arg2);
 }

 /** Write a TAB, the value and a VTAB to the outstream **/
 write_axis_unit('\t', 0, outstream);
 write_axis_unit(cur_val_upper, 0, outstream);

5.5. IP block modelling

| 55

 write_axis_unit(cur_val_lower, 0, outstream);
 write_axis_unit('\v', 0, outstream);

 advance_reg(list_id0, list_id1, list_id2);
 }

 /** Send a NULL with TLAST toggled **/
 write_axis_unit(0, 1, outstream);

 return 0;
}

The Reduce function contains the main Word Count function. The IP block itself

copies the incoming bytes into a new key register until it reaches a TAB character. Once a

new key is registered, the memory is iterated to find if the IP block already holds the given

key; if this turns out to be true, the value of that key is increased by 1; if not, the new key

is appended to the KV list and its value is set to 1. Once the input stream sends its last Byte

by toggling the last AMBA AXI field, the list is emitted through the output stream. Such a

dataflow is presented in Figure 36.

Chapter 5. Hardware platform design

56 |

Figure 36. – Reduce IP block behavioural

This IP block is the bottleneck of the entire MapReduce application, since it requires

to copy the entirety of the mapped keys into memory to properly increase the values,

instead of continuing a dataflow behaviour, such as the Split or Map function.

To decrease latency, the Reduce function was designed such that it does not iterate

the entire KV list to find a given Key, but it ‘remembers’ the position of all the keys that

share a common characteristic with the current Key. By doing so, the function only iterates

the so called ‘legal indexes’ that are allowed, which is a fraction of the total list length. The

legal indexes are those that share that common characteristic with the input key.

5.5. IP block modelling

| 57

The common characteristic was chosen to be the second letter of any given Key; if

a Key is appended to the list, its second character and index is annotated for future lookup.

Whenever a new Key arrives, the iterator only handles the indexes where stored Keys share

the same second character. The second letter itself is used as an index of the mentioned

legal indexes buffer which is used as a Content Addressable Memory (CAM).

The reason we chose the second character to be the defining characteristic, is

deduced by considering that future MR implementations may introduce a Shuffle/Sort

block in between mapping and reducing phases. By doing so, the Reduce block then

receives Keys whose first characters may as well be the same, which would render our

effort to reduce latency through common characteristic useless. Therefore, we chose the

second character to be the deciding factor.

To fulfil the described task, the Reduce function contains multiple buffers:

 Key-Value list: the main KV registry, which has a length of 500 pairs for a 1

KB input, where a Key has a width of 30 bits and a Value has a width of 16

bits (500x30x16).

 Legal indexes: a 26x500 bi-dimensional buffer containing the ‘legal indexes’

for a given key. For example, the word ‘Apple’ may be appended to the KV

list while its current index is added to the 16th array of the ‘legal index’

buffer, which is position 15 (A=0, B=1, […] P=15). 1 letter words, such as

the article ‘A’, are annotated into the 26th array, or index 25, which is

reserved for the letter ‘Z’ but statistically underused.

 Legal indexes length: a 26x1 buffer that contains the number of annotated

legal indexes in the previous buffer, or the maximum iteration length. For

example, if the registry contains 5 Keys whose second character is the letter

‘P’, this buffer reports back a length 5 for the 16th letter

(A=0, B=1, […] P=15). This allows us to reset the legal indexes by setting

all the lengths to 0, without the need to set the legal indexes buffer contents

back to NULL. This spares a great amount of latency with each Reduce

function call.

Chapter 5. Hardware platform design

58 |

One of the greatest weaknesses of the Reduce block, is its need to copy the whole

set of mapped Keys into memory to merge its values accordingly. This means that, as

opposed to the other IP blocks, the Reduce block is the only one that does not send

information in a dataflow friendly fashion; it starts emitting information once the last Key

is registered into memory.

Lastly, this IP block is the most memory and logic consuming design, as it contains

multiple KV buffers to work at high throughputs.

5.5.4. Merge

Conversely to the Split IP block, the Merge block takes 8 AXI Stream input interfaces

and merges them into 1 AXI output stream interface, as shown in Figure 37. The stream

width is of 8-bit on both ends, with an input depth of 2 KB and an output depth of 16 KB.

Figure 37. – Merge IP block

Its behavioural model is shown in the following code.

ap_uint<2> wc_merge(
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream0,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream1,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream2,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream3,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream4,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream5,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream6,
ap_axis<MERGE_IN_WIDTH, 1, 1, 1> * instream7,
ap_axis<MERGE_OUT_WIDTH, 1, 1, 1> * outstream) {

 /** OMITTED: variable declaration and initialization **/

 /** Passthrough instream0 **/
 /** Read first element of current instream**/
 read_axis_unit(instream0);
 tmp_data = in_data;
 while (in_last != 1) {
 /** Write current data to output**/
 write_axis_unit(tmp_data, 0, outstream);
 /** Read next element of current instream **/
 read_axis_unit(instream0);
 tmp_data = in_data;

5.5. IP block modelling

| 59

 }

 /** OMITTED: Passthrough instream1 **/
 /** OMITTED: Passthrough instream2 **/
 /** OMITTED: Passthrough instream3 **/
 /** OMITTED: Passthrough instream4 **/
 /** OMITTED: Passthrough instream5 **/
 /** OMITTED: Passthrough instream6 **/
 /** OMITTED: Passthrough instream7 **/

 /** Send a NULL with TLAST toggled **/
 write_axis_unit(0, 1, outstream);

 return 0;
}

The Merge IP block is the last of the MapReduce worker. In view of the Reduce

blocks not being able to send information straight away, but retaining it until the last Key

is registered, the Merge block does not need to swap between streams like the splitter

function: finding that a MR line is ready for transmitting its whole KV registry, means that

the Reduce block has finished and we can send the complete line’s result before swapping

to the next. The described functionality can be found in Figure 38.

Chapter 5. Hardware platform design

60 |

Figure 38. – Merge IP block behavioural

Since we expect the usage of FIFOs with sufficient depth connecting the Reduce and

Merge IP blocks, we do not need to worry about throttling the data transfer when handling

one complete line before swapping to the next; data is streamed from the Merge IP block

to the DMA without interruption.

5.6. CO-SIMULATION AND IMPLEMENTATION RESULTS

Considering co-simulation results being reliable, in regards of the latency expressed

as cycles, we summarise in Table 1 the co-simulation latency and the maximum working

frequency obtained in the implementation process to make throughput estimations.

Although the frequency estimated through logic synthesis may vary in the final

implementation, the co-simulation latency is not going to vary.

5.6. Co-simulation and implementation results

| 61

We stress that, since the Zynq’s PL works at a maximum frequency of 250 MHz, the

throughput calculations have been made with such a frequency, which corresponds to a

4 ns CLK cycle. It follows then, that all our custom IP blocks have a requirement of working

at a maximum of ~4 ns frequency to properly function.

Throughput has been calculated per equation (1), with D being the data processed

or transferred and T the time it took to do such a task.

Throughput[bits per second] =
D[bits]

T[s]
 (1)

The parameter report has been synthesized in the following Table 1.

Table 1. – Implementation report – Frequency, latency and throughput

IP Max. lat. (Cycles) Max. Freq. (ns) Max. Freq. (MHz) Depth (bytes) Throughput (Mbps)

Split 16,620 2.931 341.180 7,941 955.596

Map 947 2.140 467.290 911 1,923.970

Reduce 7,982 3.986 250.878 882 220.997

Merge 15,507 2.542 393.391 7,726 996.453

As we can see, the highest throughput is obtained for the Map function. The Split

and Merge lower throughput as they are splitting and combining multiple MR lines, and

the Reduce function has a low throughput response, as it contains high computation and

comparatively complex algorithms (compared to its neighbouring IP blocks).

With these results, we conclude that one MR line (composed of 1 Map and 1 Reduce

IP block) has a maximum throughput of 220.997 Mbps, as defined by its lowest element

(the Reduce block). If we consider that the final MR worker solution employs 8 MR lines,

we can deduce a maximum throughput of 1.768 Gbps, although the Merge stage is going

to diminish that throughput down to ~996 Mbps.

The utilization of each block is summarised in the following Table 2.

Table 2. – Implementation report – Programmable logic utilization

IP
Block

SLICE
(350.0K)

SLICE
(%)

DSP
(900)

DSP
(%)

LUT
(218.6K)

LUT
(%)

FF
(437.2K)

FF
(%)

BRAM
(1,090)

BRAM
(%)

Split 511 0.146 0 0.000 1,406 0.643 1,300 0.297 0 0.000

Map 47 0.016 0 0.000 119 0.054 144 0.032 0 0.000

Reduce 1,644 0.469 0 0.000 4,837 2.212 2,363 0.540 26 2.385

Merge 135 0.038 0 0.000 349 0.160 350 0.080 0 0.000

Chapter 5. Hardware platform design

62 |

It is important to note that the Vivado HLS reports BRAM utilization as 18 Kb blocks,

whereas Vivado IDE reports BRAM utilization as 36 Kb blocks.

In terms of logic utilization, it is evident that the Reduce block has the highest

utilization rate over all the resources, employing 26 18 Kb BRAM’s (468 Kb) per Reduce

block, which amounts to 3.744 Mb for 8 MR lines. The limiting resource factor is therefore

the BRAM consumption of the Reduce block, with a 2.385 % utilization, which allows only

41 Reduce IP blocks (~97.785 %) on the ZC706 device, without considering additional IP

blocks and standard Xilinx IP’s.

5.7. PLATFORM MODELLING

 Once the custom logic has been defined, we construct the hardware platform that

is implemented on the FPGA of our given SoC. The platform modelling is done via the

Vivado IP Integrator, which allows the integration of custom IP solutions as well as standard

Xilinx IP.

Our solution employs a DMA to directly communicate in-memory allocated data

with our custom platform. This does not mean, however, that a future implementation may

interconnect the hardware accelerator core with a peripheral solution, such as a GigE

interface or PCIe. The described architecture can be summarized in the following block

diagram (Figure 39). We omitted the AXI Interconnect block, that connects the PS derived

AXI Master with the custom logic and the DMA block.

Figure 39. – MapReduce based Word Count worker architecture

By instantiating the necessary IP blocks and elements required for our design, the

resulting platform is presented in Figure 40.

5.7. Platform modelling

| 63

Figure 40. – Zynq ZC706 Platform – Complete MapReduce worker

Chapter 5. Hardware platform design

64 |

The shown platform has been simplified, showing interface connections only and

omitting clock and reset signals, as well as the Processor System Reset IP block. Custom IP

blocks stand out by using a Vivado HLS logo, whereas standard Xilinx IP do not.

The standard Xilinx IP employed in the design are:

 AXI Direct Memory Access (DMA): interfacing custom logic IP with an AXI

Interconnect that accesses the PS memory.

 AXI Interconnect: interfacing the PS memory with the DMA.

 AXI Interconnect: interfacing the PS controlled AXI Master interface with the

custom logic AXI Lite Slave interfaces for IP block configuration and control

(start, stop, reset).

It is a requirement to design the IP block including an AXI Lite interface so

that future driver functions may be inferred by the Vivado IDE. Otherwise,

no interfacing between the PS located software and the custom IP block can

occur, which makes us unable to drive the IP blocks signals to start, stop,

restart or configure it.

 Processor System Reset: required standard Xilinx IP that governs the global

reset signal.

 ZYNQ7 Processing System: required standard Xilinx IP. Allows for PS

configurations, such as establishing the PL fabric clock frequency (250 MHz

max), the processor/memory clock frequency 800 MHz max),

enabling/disabling fabric interrupts, enabling/disabling AXI or peripheral

interfaces, etc.

 AXI4-Stream Data FIFO: employed between split, map, reduce and merge

stages to allow for a dataflow friendly architecture. We used 24 FIFOs: 16

with a depth of 1 KB and 8 with a 4 KB depth.

In light of achieving better implementation results, we opted for a Performance

retiming strategy, accessible via the Vivado Implementation Options [32].

To comply with our stream depth and width, we used 1 KB FIFOs connecting the

Split and Map blocks, as well as in between the Map and the Reduce stages. Since the

Reduce block sends at most 2 times the data input (as described in Chapter 4, section 4.2.3)

5.7. Platform modelling

| 65

and the FIFO depths come in multiples of 16, we employ 2 KB FIFOs at its output, connecting

them to the Merge IP. We did not require additional FIFOs between the DMA and our

custom IP’s. We illustrate the FIFO configuration in Figure 41.

Figure 41. – FIFO position and configuration

We decided to use our DMA in interrupt mode for both MM2S and S2MM (memory-

to-stream and stream-to-memory) channels, as we reduce data transfer latency by

interrupting whatever the PS was doing and serving the interrupting agent. In order to

allow both, MM2S and S2MM interrupts to be served, we employ a Concat IP block that

allows a logic OR between both interrupt signals and connects the result to the PL-PS fabric

interrupt of the Processing System (Figure 42).

Figure 42. – DMA PL-PS interrupt setup

The reset of the DMA configurations include an 8-bit data width on both the read

channel and the write channel, with a memory map data width of 32 bits.

1 KB FIFO 1 KB FIFO 2 KB FIFO

PL-PS

Interrupt

Concat IP

block

DMA

Interrupts

Chapter 5. Hardware platform design

66 |

5.8. PLATFORM IMPLEMENTATION RESULTS

Once the platform is modelled accordingly, the design is put through a logic

synthesis and implementation phase to produce the required output products that are

ultimately implemented on the SoC’s FPGA as a netlist. The results of this implementation

phase are presented in this section.

5.8.1. Layout

To identify all the custom PL elements that compose our platform, Figure 43

presents the hardware layout, highlighting the most relevant cells of the design.

Figure 43. – MapReduce worker platform layout

5.8. Platform Implementation results

| 67

We observe that the programmable logic starts off by gathering around the

system’s PS (upper left, orange) and then constructs itself around it to increase the

maximum operating frequency by reducing datapath lengths and clock signal routing. As

expected, the Reduce IP block has the greatest programmable logic footprint, since it

consumes the most BRAM’s.

5.8.2. Utilization

The complete utilization report is shown in Table 3 and Table 4. We illustrated as

‘Platform’ the report associated to the complete hardware accelerator, including custom

and standard IP. We want to remind that Vivado reports the BRAM usage by considering

36 Kb blocks, instead of 18 Kb such as Vivado HLS does.

Table 3. – Absolute hardware platform utilization report 1

IP Slices (54,650) LUT (218,600) LUTRAM (70,400) FF (437.2K) BRAM (454)

Platform 17,049 45,564 21,564 30,113 145.5

Split 457 1,296 0 1,298 0.0

Map 427 1,039 0 1,152 0.0

Reduce 14,143 37,901 21,376 20,768 104.0

Merge 145 321 0 350 0.0

Table 4. – Relative hardware platform utilization report

IP Slices (%) LUT (%) LUTRAM (%) FF (%) BRAM (%)

Platform 31.20 20.84 30.63 6.88 32.05

Split 0.84 0.59 0.00 0.29 0.00

Map 0.78 0.47 0.00 0.26 0.00

Reduce 25.88 17.34 30.36 4.75 19.08

Merge 0.26 0.15 0.00 0.08 0.00

We conclude that the limiting factor for the usage of more MR-WordCount workers

is the BRAM usage at 32.05 %, and the LUTRAM usage coming second, as one worker

consumes up to 21,564 LUTRAM’s (30.63 %), whose greatest contributor are the Reduce

IP’s. The utilization report is illustrated in Figure 44.

1 Standard IP derived programmable logic has been omitted, such as FIFOs or AXI Interconnects

Chapter 5. Hardware platform design

68 |

Figure 44. – Hardware platform utilization report (%)

It easily follows, that the Reduce IP block is the most consuming in the entire

platform, which occurs because it integrates buffers of large dimensions, something that

could be resolved or optimized in future iterations.

We conclude that we can fit a maximum of 3 MR workers on the custom platform,

consuming then a maximum of 96.15 % of the maximum available LUTRAM’s.

5.8.3. Utilization factor

As explained in [26], 4 LUT’s and 8 FF’s are contained in one single Slice of a Zynq

PL. As a matter of measuring PL utilization efficiency, we define a Utilization Factor (UF) as

presented in equation (2) and (3).

UFLUT =
N. of LUT's

N. of Slices
 (2) UFFF =

N. of FF's

N. of Slices
 (3)

Considering the slices, LUT and FF utilization of our hardware accelerator, we can

synthesize its Utilization Factors in

0

5

10

15

20

25

30

35

Platform Split Map Reduce Merge

UTILIZATION REPORT (%)

LUT (%)

LUTRAM (%)

FF (%)

BRAM (%)

5.8. Platform Implementation results

| 69

Table 5.

Table 5. – Hardware accelerator utilization Factor

IP UFLUT UFFF

Platform 2.67 1.77

Split 2.84 2.84

Map 2.44 2.70

Reduce 2.68 1.47

Merge 2.21 2.41

The mean UFLUT is 2.67, while its UFFF is 1.77. As previously stated, 1 slice contains

up to 4 LUT’s and 8 FF’s. Regarding our results, we can conclude that our design has a good

UFLUT factor is it approaches 4, whereas the UFFF is poor. This occurs as our design relies

more on BRAM and LUT programmable logic and not on FF’s, since the Reduce IP is the

most PL consuming block.

If our design were less memory oriented and dataflow centred, our UFFF would rise

to be closer to a factor of 8. The same would happen if we’d use retiming directives during

the Vivado HLS design phase as these techniques requires a high FF usage. However, the

used area would increase since BRAM’s are more compact in terms of storage than FF’s.

By comparing this work with other in the field, such as presented by Carballo in [34],

we can compare our results with other implementations that share similar architectures

on other Zynq devices, as presented in Table 6.

Table 6. – Slices utilization factor comparison with [34]

Design Design architecture HLS Tool FPGA Device
Utilization factor

UFLUT UFFF

0 Platform + IP Vivado HLS Xilinx Zynq 7z020 2.91 2.90

1 IP CtoS Xilinx Zynq 7z045 3.32 1.64

2 Platform + IP Vivado HLS Xilinx Zynq 7z045 2.29 3.05

3 IP Vivado HLS Xilinx Zynq 7z045 2.12 2.79

4 Platform + IP CtoS Xilinx Virtex-5 FX 130t 2.85 2.09

MR Worker Platform + IP Vivado HLS Xilinx Zynq 7z045 2.67 1.77

Chapter 5. Hardware platform design

70 |

Our LUT utilization factor is on par with the overall UFLUT for similar solutions on

Zynq devices, as well as a Xilinx Virtex-5. None of the designs achieve a high UFFF usage,

something we can attribute to the HLS design flow, which underuses the available slices,

despite having up to 8 FF’s per slice on a Zynq device.

5.8.4. Timing summary

The designed hardware platform, or accelerating core, is implemented with a

maximum operating frequency of 800 MHz on the PS side, and 250 MHz on the PL side.

The achieved Worst Negative Slack (WNS) on the PL side is 97 ps, allowing an operating

frequency of 250 MHz (4 ns).

5.8.5. Power consumption

Lastly, the power consumption is summarized in Figure 45, as provided by the

Vivado implementation report tool.

Figure 45. – Hardware platform power consumption summary

The power consumption is divided into dynamic and static power. Whereas the first

belongs to the power consumption derived from the implemented logic on the FPGA, the

static power belongs to the amount of leakage current of the employed technology’s

transistor and materials.

The MapReduce platform has a dynamic power consumption of 3.369 W while its

static power consumption is of 0.265 W. As we can see in the previous figure, the most

consuming element of the dynamic power is the PS IP block, that communicates over all

the platform using AXI-Lite interfaces to all the custom IP’s, as well as managing the

communications between the DMA and memory through AXI Stream.

5.9. Conclusion

| 71

5.9. CONCLUSION

This chapter concerns itself with the hardware platform design, that is ultimately

implemented on our ZC706 device. The design process starts by stating the Vivado HLS

considerations, or design dos and don’ts, as HLS does not support some C/C++ constructs.

To solve these problems, we present a synthesizable functions library, and to allow for a

flexible design flow we present the usage of a tuneable parameters file and an ad-hoc

created AMBA AXI4 Stream driver, to properly drive the interface’s signals.

Following up, we describe the modelling processes for our individual hardware IP’s,

design issues and obtained results by presenting their co-simulation and implementation

products. The highest obtained throughput belongs to the Map IP block with

1,923.970 Mbps, while the lowest belongs to the Reduce IP, with 220.997 Mbps, through

which we can infer a maximum Reduce stage throughput of 1,767.976 Mbps.

We cover the hardware platform design by using our custom hardware IP’s and the

standard Xilinx IP’s. We implement the MapReduce worker, as proposed in Chapter 4,

resulting in maximum a programmable logic utilization of 32.05 %, as a consequence of

the Reduce IP block’s high BRAM utilization. The maximum working frequency is the highest

we can set for the PL, which is 250 MHz.

| 73

Chapter 6. HARDWARE-SOFTWARE INTEGRATION

Since Chapter 5 concerned itself with the hardware platform design of our

accelerator core, in this chapter, we present the integration of the hardware platform and

the software application that runs it. This includes the hardware (HW) platform

instantiation, the Board Support Package (BSP) creation, the software creation itself and

the presentation of its behaviour.

The Hardware-Software integration is accomplished using the Xilinx SDK

environment, which allows for easy FPGA and SoC memory programming as well as

debugging through JTAG.

6.1. HARDWARE PLATFORM INSTANTIATION AND BSP CREATION

In the interest of integrating the hardware with a software application via the Xilinx

SDK environment, we start instantiating the generated Hardware Platform (HWP). The

HWP specification captures all the information and files from our generated hardware

accelerator core in Vivado IDE, that is required for the designer to be able to write, debug

and deploy software applications for that hardware [31].

The HWP contains first and foremost, the hardware design wrapper generated in

Vivado, the PS configuration for the targeted device, and the drivers associated to our

custom PL solutions, as presented in Figure 46.

Chapter 6. Hardware-software integration

74 |

Figure 46. – Word Count MR Worker Hardware Platform files

Having the HWP at hand, we must develop two more elements to complete the

Hardware-Software integration:

 The Board Support Package (BSP).

 The bare-metal software application.

A BSP is a collection of libraries and drivers that provides the designer with the

means of accessing the lowest layer of our Hardware-Software solution [31]. Since our HWP

carries the drivers for our custom IP designs, during the BSP creation process, Xilinx SDK

generates the remaining drivers and libraries needed for a designer to access the lowest

layer of the custom design, and merges them with the custom IP drivers. If a software

design is integrated without a BSP, it is not possible to link the software layer with the

generated hardware. To evidence this, we present the HWP, BSP and application

integration flow through Figure 47.

Word Count IP

HWP
Bitstream

PS Config

6.1. Hardware platform instantiation and BSP creation

| 75

Figure 47. – Xilinx SDK integration flow and Hardware-Software integration

Once the BSP is generated, it includes our custom drivers, standard C/C++ libraries

(mostly adapted by Xilinx) and custom Xilinx libraries, that allow for easier communication

between designer and design. As an example, in Figure 48 we illustrate the mentioned

drivers and a few of additional peripherals.

Chapter 6. Hardware-software integration

76 |

Figure 48. – ZC706 BSP and its drivers

Once the Hardware Platform and the BSP are created, it is possible to design a Bare-

Metal Application that uses the BSP to ultimately access the HWP on our Zynq AP SoC.

6.2. BARE-METAL APPLICATION

Equivalent to platform modelling in hardware, in this section we concern ourselves

with the application design in software. The software application manages the hardware

platform and memory initialization and configuration, as well as signal handling such as

interrupts and resets of the system.

The BSP OS chosen for our design was Standalone 6.2, which is a simple, low-level

software layer that provides access to the basic features of the processor such as caches,

interrupts and exceptions, as explained by the Xilinx SDK environment [35].

Word Count
IP

DMA

GPI
O

UART

6.2. Bare-metal application

| 77

6.2.1. Used libraries and drivers

We have used different libraries and drivers throughout the application

development. Before we dive into the behaviour of our bare-metal-application, in Table 7

we summarize the main utilized drivers and libraries, including those that allow us to

manage our custom PL IP blocks. Standard C/C++ function libraries have been omitted. We

marked the libraries and drivers according to its author: Xilinx, if it is designed by Xilinx in

its entirety; HLS, if it is a driver issued by the Xilinx Vivado HLS environment; User, if it is a

user defined library or driver.

Table 7. – Used libraries and drivers

Lib./Driver Creator Functionality

xtime_l.h Xilinx
Access to the 64-bit Global Counter in the PMU. Allows to get/set time

in the global timer. Used for timestamps.

xscugic.h Xilinx Generic interrupt controller driver component.

xaxidma.h Xilinx Driver API for the AXI DMA engine.

xil_printf.h Xilinx
Function library to output data the same as the standard printf()

function, without the overhead most run-time libraries involve.

xparameters.h Xilinx

Contains definitions related to the current hardware platform, such as

the device ID of the AXI DMA or the PS IP block. Definitions for the

peripheral memory addresses, as mapped

xparameters_ps.h Xilinx
Contains address definitions for the hard peripherals attached to the PS

core.

xil_exception.h Xilinx Contains ARM Cortex A9 specific exception related API’s.

xwc_map.h HLS

Contains the driver API that manages the custom IP for initialization,

configuration and execution. Created automatically by Vivado HLS.

xwc_reduce.h HLS

xwc_split.h HLS

xwc_merge.h HLS

platform.h User

Contains the MapReduce worker API for initialization, configuration

and execution. Basically, employs the xwc_* driver API’s to set up the

entire MapReduce worker.

utils.h User Contains user specific functions for buffer and time stamps handling.

wc_parameters.h User Contains user specific parameters to fine-tune the design with ease.

wc_axidma.h User

Contains the AXI DMA API for initialization, configuration and

execution. Basically, extends the xaxidma driver API to set up the DMA,

its interrupt system and its IRQ services.

We remind the reader that the programmed Zynq AP SoC put under test and

validation with our custom hardware platform, has no OS installed in its memory, as it is a

Standalone OS. Although we are still using a DMA, we can copy the input files onto a Secure

Digital (SD) card and read the information back to send it to our accelerator platform. In

the same fashion, we can recover the data from the core and store the results in an output

Chapter 6. Hardware-software integration

78 |

file.. Thus, the input stream data is allocated previously in memory and then sent to the

hardware accelerator, while the output stream is recovered and presented to the designer

to validate the behaviour of the hardware accelerator core.

6.2.2. System Setup

To send data to our MapReduce worker, we must first initialize and configure our

hardware platform. For short, we call this System Setup, and it can be summarized in Figure

49.

Figure 49. – System setup flow

6.2. Bare-metal application

| 79

The System Setup processes must include:

 DMA initialization.

o Initialize the DMA driver.

o Enable interrupts on both TX and RX channels of the DMA

o Set up the interrupt system, which includes setting the interrupt

triggers type and priority and linking the interrupt controller driver

with the device driver handler that responds when an interrupt for

the device occurs.

o Enable the IRQ routine that services the DMA interrupts and resumes

the main application.

 MapReduce worker initialization.

o Initialize the Split IP driver.

o Initialize the 8 Map IP’s drivers.

o Initialize the 8 Reduce IP’s drivers.

o Initialize the Merge IP driver.

An initialization of any of the underlying IP blocks uses the HLS generated

drivers and may look like this:

int map_init(XWc_map * device, int device_id) {
 status = XWc_map_Initialize(device, device_id);

 if (status != 0) {
 xil_printf("\tMap initialization failed %d. Incidental with device
 number \r\n", status, device_id);
 return 1;
 }

 XWc_map_Start(device);
 XWc_map_EnableAutoRestart(device);
 XWc_map_InterruptGlobalDisable(device);

 xil_printf("[Map] Map %d initialized.\n\r", device_id);
 return 0;
}

First, we link the software construct pointer to the devices hardware ID,

enabling therefore access to the hardware device by calling its software

construct. Following up, we start up the device, enable the auto restart

functionality of our IP block (the device restarts its I/O signals if a transaction

Chapter 6. Hardware-software integration

80 |

is completed) and we disable its interruptions, as they are not used for any

of the blocks that reside inside our MR worker.

6.2.3. Application flow

Once the system is set up successfully, the hardware platform is ready to receive

data and produce a formatted output at its end. A normal application function flow then is

summarized in Figure 50.

Figure 50. – Main application behavioural flow

Such a behavioural is presented in the following snippet of code.

int main(int argc, char *argv[]) {

6.2. Bare-metal application

| 81

 xil_printf("\r\n--- Entering main() --- \r\n");

 /** Initialize the XTime variables with trivial values **/
 XTime_GetTime(&tStart);
 XTime_GetTime(&tEnd);

 /** Set up the platform **/
 platform_setup();

 /* Make a test run to start the IP blocks.
 * The IP blocks that store information in memory (WC_Reduce), clear themselves
 * when emitting a response, which allows new transfers. */

 /* Execute runs */
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 80; j++) {
 partition = 100 * j;
 test_run(key_ptr[i], partition);
 if (Status != XST_SUCCESS) {
 xil_printf("\tERROR! Run %u failed! Status value: %d\n\r", i,
Status);
 return XST_FAILURE;
 }
 }
 }

 xil_printf("\r\n--- Exiting main() --- \r\n");
 return Status;
}

After calling the main System Setup function with satisfactory results, the user can

transfer data to and from the MR worker. We previously allocated ~8 KB test keys to

explore our MapReduce application.

The test_run() function is given the size of the data and a pointer to it. It then kicks

off the DMA transfers and waits for the DMA interruption to respond. Once the IRQ is

served, the test_run() function presents the data and clears the necessary variables to

allow new transfers to happen.

By defining the tests runs as we did in the previous snippet of code, we use a pointer

to iterate through the given keys. Every one of the keys is then sent to the MapReduce

platform by gradually increasing the transfer length from 100 bytes to a maximum of 8 KB

in steps of 100 bytes. Doing so allows us to record all the latencies and throughputs by

using one test application with different keys.

Chapter 6. Hardware-software integration

82 |

6.3. CONCLUSION

Having described the complete design flow from the Hardware Platform creation,

Board Support Packet generation and the design of the Bare-Metal Application, we can

summarize the applications main characteristics as follows:

 The MapReduce platform is wrapped in such a manner that the designs

behavioural code is abstracted to the user, and only requires a System Setup

and subsequent data transfers to happen.

 The MapReduce platform allows a maximum input data size of 8 KB of data.

 The output has a maximum size of 16 KB, as the data is received using the

Key-Value stream protocol described in section 4.3, Streaming interfaces

considerations.

 Clearing of the interrupt signals and the reset of the buffer contents and

buffer lengths happen automatically after each transfer.

 The employed data is previously declared in memory, as we are using a Bare-

Metal, DMA based, architecture.

 The DMA is set up using interrupt signals for both TX and RX channels, in an

effort to reduce latency.

 The presented application recollects the test runs’ data length, computation

latency and its derived throughput for further analysis.

| 83

Chapter 7. VALIDATION PHASE

In this chapter, we use the MapReduce platform and revise its main behavioural

description, validating whether it produces the expected output for a given input and in a

respectable latency. By doing so, we explore the output parameters of the whole system,

such as overall throughput. Once we have presented the platform’s main parameters, we

model its latency response with respect to a given input data to make latency predictions,

and we make improvement proposals, before arriving at the conclusions for the validation

phase.

7.1. VALIDATION ENVIRONMENT CHARACTERISTICS

In Figure 51, we observe the evaluation board’s setup for the final validation phase,

being directly connected to the workstation using JTAG and UART connectors. In this

manner, we are able to program the evaluation board with our custom hardware platform

and our software solution and debug it in runtime. The Ethernet shown Ethernet

connectors are not being used.

For the final validation, we use 5 test keys that are used on the Word Count

platform, plus a 1-Byte token key. Whereas the first key includes only a single character,

the other entail a close to 8 KB extract from multiple different sources. The test keys are

described in Table 8.

By using multiple different keys, we can calculate the platforms parameters

employing samples whose word distribution and recurrence varies. We use a Byte1-Byte

token key in an effort to find the lowest latency of the platform.

Chapter 7. Validation phase

84 |

Figure 51. – Zynq ZC706 setup

Table 8. – Validation test keys

Key name Size (bytes) Content/Observation

token 2 Arbitrarily chosen Byte + ‘\0’ character

space_od 7,845 An extract from the 1968 novel, “2001: A Space Odyssey” by Arthur C. Clarke

kafka 7,996 An extract from the 1915 novel, “The Metamorphosis” by Franz Kafka

li_europan 8,000 An extract from Edgar von Whal’s assertion “Li Europan lingues”, 1922

goethe 7,998
An extract from the 1774 epistolary, “The Sorrows of Young Werther”, by

Johan Wolfgang Goethe

harryp 8,000
An extract from the 1997 novel “Harry Potter and the Philosopher’s Stone”,

by J. K. Rowling

7.2. Latency analysis

| 85

7.2. LATENCY ANALYSIS

The latency itself is measured by using two methods:

1. the worker latency from the Split to the Merge block (or the delay between

DMA transfer to device and its response), and

2. the line latency, which is found by measuring the MapReduce line’s latency

(the delay between the first Map block’s start processing till the last Reduce

block ends sending data).

These two methods are included, as a MapReduce architecture on a SoC solution

may include the Splitting and Merging functions as a software implementation, as opposed

to custom hardware IP’s in the PL’s logic.

Out of simplicity, the worker latency is also identified as a DMA per interruptions

setup (DPIS), as the DMA is set up using system interrupts to service incoming data transfer,

while the line latency is also called Reduce per polling (RPP), as in this case the application

measures the systems delay until all the Reduce IP’s have their information transmitted

and uses polling to learn about it.

We use the XTime provided C/C++ constructs to place time stamps (for more

information we refer the reader back to 6.2.1 Used libraries and drivers) with a precision

in μs . Although we understand that latency measurements have a higher degree of

accuracy by employing Integrated Logic Analyzer’s (ILA), which measure latency in cycles,

an overall latency measurement of this type requires a common interface through which

we can observe both the transmission and reception of our data to and from the

MapReduce worker. Our architecture does not have such an interface, as we transmit data

over one AMBA AXI interface and receive the formatted data over another. Thus, we are

required to use in-software placed timestamps to estimate latency behaviour at a higher

level of abstraction.

The usage of software timestamps presents two problems:

a. It includes function call overhead and produces fluctuations in the measured

time, as it depends on the PS’ workload at the time of the execution. We

Chapter 7. Validation phase

86 |

solved this by eliminating all unnecessary function calls, data prints and

variable handling during the worker’s data transfer.

b. The second problem is solved by executing a test key multiple times and

taking the mean of the measured latency.

7.2.1. Latency measurements

Latency measurements are done by feeding the MapReduce worker fragments of

the original test keys with an increasing size till reaching 8 KB of data. We repeat this

process for all the given keys, with regards to obtaining enough data to model the systems

latency. We arbitrarily chose sending data fragments to the MapReduce worker with a data

size step of 100 bytes. The results for both DPIS and the RPP cases, are presented in Figure

52 and Figure 53.

Figure 52. – System Latency using DMA per interruptions

7.2. Latency analysis

| 87

Figure 53. – System Latency using Reduce stage per polling

The mean MapReduce worker latency is higher than the line latency, as one would

expect considering that it includes two IP blocks on both ends, splitting and combining the

stream, adding latency to the datapath. It stands out that the line delay for the token key

is higher than the delay of the worker, as the latency is measured for the first case through

polling and for the second through interruptions. Also, the mean delay is higher for the

entire worker. We synthesize the mean latencies in Figure 54.

Figure 54. – Mean system latency comparison

Chapter 7. Validation phase

88 |

As Figure 52 and Figure 53 shows, the platform requires 8 μs for the DMA per

interrupt case and 3.2 μs for the Reduce stage per polling case, for 1 Byte of data to

traverse the entire Word Count platform, a delay we call the node delay, or dnode, as it is

the minimum delay introduced by the system.

Whereas the line latency increases at a rate of 9.2 ns per Byte, the worker latency

increases at a rate of 15.2 ns per Byte. Both latencies have a linear behaviour, with an

initial offset or minimum dnode latency.

It is evident that the line latency is significantly lower, as the data is not passed

through a bottleneck in order to gain access to the PL device and back to the memory

through the DMA. By comparing these latencies, we conclude that the Split and Merge IP

blocks introduce significant throughput penalty to the whole operation.

7.2.2. Throughput measurements

The throughputs have been calculated using the aforementioned latencies, and

using equation (1) (as defined in section 5.6). These results are presented in Figure 55.

Figure 55. – System throughput estimation

Evidently, the calculated throughputs are higher for each of the lines, as we are not

including the splitting and merging phases. Both throughput estimations have logarithmic

behaviour, since the MapReduce accelerator requires a minimum time delay dnode, and

7.3. Conclusions and system validation

| 89

therefore does not behave linearly when dnode ≅ Latency . Once Latency ≫ dnode , the

throughput has a linear behaviour, which occurs at ~1500 bytes, as shown by Figure 55.

The complete MapReduce worker throughput can be estimated at 500 Mbps with

the line throughput being estimated at 850 Mbps. Lastly, we can argue that transmissions

of poor amounts of data have a delay time such that it is close to dnode, and therefore are

not efficient.

7.3. CONCLUSIONS AND SYSTEM VALIDATION

An extract of the obtained data of one of the test keys is presented in Figure 56.

Figure 56. – Word Count execution sample

The formatted data is uppercased as to avoid non-merging of two keys that are

expressed in either upper- or lowercase. The data itself is formatted such that a key is

Chapter 7. Validation phase

90 |

separated from its value by a tab character, making it easy to read both by the user and

text parsing machines.

We must stress that, since we did not use a Shuffle/Sort function or IP block

between the Map and the Reduce stage, it may happen that two identical keys are not sent

to the same IP block to be merged together. As an example, consider a KV pair “THE 15”

mapped by Mapper_0 and another pair “THE 4” mapped by a neighbouring Map IP block.

If the mapped KV pairs are shuffled and sorted before being sent to the Reduce block, the

same block oversees merging those two KV pairs into “THE 19”. As we do not employ such

a solution, two Reduce blocks in our design process those KV pairs and send them to the

Merge IP, thus presenting the KV pair “THE 15” and “THE 4” separately.

Despite not using a shuffle/sort IP, we confirm after careful consideration, that the

system produces the expected output in an acceptable amount of time that allows it to be

placed into high performance scenario’s.

Regarding the computational delay introduced by the MapReduce Hardware

Accelerator, we conclude that the measured latencies produce a data throughput

acceptable for High-Throughput environments.

For a maximum sample size of 8 KB, the worker latency rises to 127 μs while the

Map-Reduce pair lines have a 75 μs latency. These result in throughputs of 500 Mbps and

850 Mbps, respectively.

The created application that oversees the hardware accelerator core, despite it

using previously in-memory allocated keys, has been built such that it is easy to handle,

rewrite and use to produce a Word Count formatted output.

The entire MapReduce framework was designed keeping in mind that the ultimate

application is interchangeable, laying down the groundwork for MapReduce based

applications in other fields. For a new application to be inserted upon the MapReduce

worker, one must only revise the Map and Reduce main function bodies as well as the Split

IP separation criterion.

| 91

Chapter 8. RESULT ANALYSIS, CONCLUSIONS AND FUTURE

WORK

This final chapter encompasses the final conclusions obtained during the

development of this thesis. First, we cover the overall performance results regarding the

functionality, the latency and the throughput of the designed MapReduce worker. On a

second note, we use this information to make improvement proposals that can be applied

upon our work. As a matter of context, we then compare the results of our work with

similar solutions in the field. Lastly, we close this chapter by stating the overall conclusions

and making suggestions for future developments that may use this work as a mean of

developing solutions in the field of FPGA based AP SoCs using HLS methodologies.

8.1. OVERALL RESULTS AND CONCLUSIONS

This work proposed the implementation of a MapReduce worker platform that

responds to a Big Data application on a Xilinx Zynq AP SoC. Explicitly, the objective of this

thesis is the development of the underlying acceleration Kernels required in both,

hardware and software, to implement the final solution. The solution itself was defined as

a MapReduce based Word Count application, and allows for the design of a basic

MapReduce framework on a heterogeneous system, as it is our Zynq AP SoC. The final

solution ought to comply with low-latency and high-throughput standards, as it works in

the HPC field.

Having reached the end of this thesis, we can conclude the design of such a

MapReduce based worker, with the Word Count accelerator core embedded as a hardware

solution on the FPGA, and the data handling constructs in software, governed by the PS.

The system itself employs previously in-memory allocated data, as we linked the worker’s

I/O streams to a local DMA.

Chapter 8. Result analysis, conclusions and future work

92 |

The worker itself can be summarized by having the following characteristics:

I. The designed hardware accelerating core uses a MapReduce based

framework, employing a data split, map, reduce and data merging phase for

high throughput data processing. Neither a combiner nor a shuffle/sort

stage has been included.

II. The designed worker employs a Key-Value based data protocol for both

memory storage and streaming purposes between IP blocks.

III. The worker itself is adapted for character parsing solutions, specifically for

Word Count purposes. Changing the worker’s application (i.e. Linear

Regression, Kmeans, Histogram) requires a re-design of both the Map and

the Reduce IP blocks. The Split IP block requires a minor change, which is the

splitting criterion.

IV. The maximum amount of data a worker can support is 8 KB. Although it is

true that the worker could accept indefinite data as long as its FIFOs are

being read, the Reduce stage has limited memory, as it needs to compare

the incoming Key-Value pairs to the ones stored in memory.

V. The accepted characters to compose keys (words), are lowercase or

uppercase alphabetic letters. In ASCII, accepted keys are composed of the

codes 65 to 90 (‘A’ to ‘Z’) and 97 to 122 (‘a’ to ‘z’). Alphanumeric words are

therefore not accepted as a complete key; the non-alphabetic component is

ignored and considered a separating character.

VI. Letter casing is not relevant, as incoming words are uppercased by the Word

Count mechanism.

VII. Considering that a line-latency regards the processing delay for a Map-

Reduce IP pair, and that the entire worker’s latency includes all the line

latencies as well as the splitting and merging action, we conclude:

o A maximum line latency of 𝟕𝟓 μs and a throughput of 𝟖𝟓𝟎 Mbps.

o A maximum worker latency of 𝟏𝟐𝟕 μs and a throughput of

500 Mbps.

8.2. Improvement suggestions and future developments

| 93

VIII. Data traversing the MapReduce worker suffer an overall minimum dnode

latency of 8 ns, suggesting that the worker is at its least efficiency when the

data processing delay is ~dnode.

8.2. IMPROVEMENT SUGGESTIONS AND FUTURE DEVELOPMENTS

In the spirit of concluding this document and closing the work done in this Master’s

Thesis, we make improvement suggestions of the designed system, and take the

opportunity to make recommendations for future endeavours that may encompass this

work or elements of it.

8.2.1. Throughput issues

The first issue we want to address is the throughput throttling elements throughout

the whole design.

The first of these elements are the Split IP’s and the Merge IP’s. It is obvious that

these comprise crucial nodes, with regards to the latency and throughput measurements

of the worker. As the split and merge elements handle the streams of our worker to

parallelize the computation, their latencies ought to be the lowest of the whole design,

something we were not able to achieve during this thesis.

The second of these elements, is the Reduce IP. This stage is the most crucial of the

entire MapReduce worker, as a result of the reduce phase requiring to store the entire Key-

Value registry into memory, iterating it, and finding and merging KV pairs. This IP block is

the only one with such a behaviour, as the others employ a dataflow type behaviour. This

meant that we had to use drastic optimization solutions for the Reduce IP, with regards to

lowering computation latency, at the cost of high fan-out’s and a high logic memory

footprint.

In the spirit of reducing the processing delay, we suggest using a lower level of

abstraction with regards to the algorithmic description of these IP’s. We suggest using a

SystemC based description to achieve low-latency designs that increase the worker’s

overall performance, tuning the description to be closer to a RTL level.

Chapter 8. Result analysis, conclusions and future work

94 |

Regarding the Reduce IP, on top of the SystemC design suggestion, we propose a

hash table storage structure for Key-Value pairs in between the Map and the Reduce phase,

to reduce lookup and transfer related latency [21], [36], [37].

Lastly, we do also suggest a study of the AMBA AXI Stream interface width, as we

employed a Byte1-Byte wide stream interface. We used such a width, as most of the

designed IP blocks use a Byte-by-Byte processing method to analyse the characters that

compose the stream. By doing so, we eliminated data type conversion latency, since the

data must be registered into a buffer and consequently processed per Byte. We still

encourage a study of a MapReduce worker with increased width, i.e. 64-bit’s width for all

the interfaces, expecting to increase throughput.

8.2.2. Memory limitations

The Reduce IP block is the main limiting factor with respect to the memory

allocation of the KV pairs, and is the most programmable logic consuming IP of the whole

design. Since we are using a great number of instances of these IP’s, we suggest the usage

of a memory storage solution, that allows storing KV pairs in the least memory available.

Such a solution may include hash based storage buffers, such as Bloom Filters (BF) [38].

A second approach to reduce memory footprint of the Reduce IP, suggests not using

buffers where KV pairs are stored adjacently but concurrently, therefore employing the

available buffer in a more efficient manner. This means, instead of storing an example key

‘Key_0’ into a memory address A, and ‘Key_1’ into address B, we suggest storing both Keys

concurrently into the same address and copy the remainder into the next. By applying this,

less memory is left unused and therefore more keys and values can be stored into the

registry.

8.2.3. Parallelism

Out of simplicity, disregarding the already mentioned throughput issues with the

Split and Merge IP’s, we propose the usage of multiple MapReduce workers in a concurrent

manner, therefore increasing the throughput of the whole system.

For our system, the total programmable logic footprint depends on the total

LUTRAM usage of a 32.05 %, therefore allowing up to 3 MapReduce workers on the Zynq

ZC706 device. Ideally, since our system has a maximum throughput of 850 Mbps

8.2. Improvement suggestions and future developments

| 95

considering line latency, and a throughput of 500 Mbps for the entire worker, one could

achieve throughputs of 2,550 Mbps and 1500 Mbps, respectively.

8.2.4. Software application improvement

The developed standalone application is designed for a simple MapReduce and

Word Count based hardware accelerator. This hardware core is not fault-tolerant, as the

underlying IP’s have no means of contacting the PS about a misbehaviour of the

architecture, neither is the solution work balancing as the individual IP’s have no specified

protocol nor interface to report statistical inferences.

For these remarks to be included in a new and more complex solution, it is required

to alter the software application such that it interprets data received from the underlying

IP’s, although it is true that for this to happen the hardware IP’s must include a mean of

communicating with the PS side of the SoC.

8.2.5. Architecture modifications

One of the main shortcomings of this thesis, is the lack of a sort/shuffle IP or

function that sorts the recently mapped Key-Value pairs such that the Reduce stage may

process the KV pairs accordingly and without any errors and repetitions. We therefore

suggest the creation of either a hard IP sort/shuffle block, that allows to interface between

the Map and the Reduce stage for the proper sorting of the KV pairs. This solution is not

limited to be integrated into a hardware IP, but can also be designed as part of a software

solution, always considering the expenses to be made when sending data from the PL

section to the PS to shuffle and sort, and send it back.

A second modification may build upon the MapReduce worker itself, as we designed

this system to employ a simple Word Count application. This does not limit the MapReduce

worker, as we recommend remodelling the relevant IP’s to integrate another application,

such as Kmeans, Linear Regression, PCA, or else.

A third idea arises when considering the original MapReduce implementations,

where a combiner function is used after the Map stage to relieve computation off the

Reduce stage. This could also be a future modification, including a hardware or software

implementation of a combiner function, although we suggest a hardware solution to avoid

a bottleneck when sending data back from the MapReduce line to the PS side of the SoC.

Chapter 8. Result analysis, conclusions and future work

96 |

Lastly, and we find it to be one of the most relevant suggestions, is the modification

of the data input and output interfaces. As for now the implementation connects the

MapReduce worker with a DMA that switches the data from and to memory. As the DMA

only works at a maximum speed of 240 MHz for AXI Stream and 200 MHz for AXI-Lite

interfaces [39], we suggest changing the architecture integrating an interface whose

throughput is higher than a DMA, e.g., PCIe or GigE interfaces, keeping in mind that such

an implementation calls for the extension of the implementation to an architecture that

allows an external host to communicate with the Zynq AP SoC through either of those

interfaces.

8.3. CLOSING STATEMENTS

Having arrived at this point of the current thesis, we can safely conclude the design

and implementation of a MapReduce worker on a Xilinx Zynq FPGA based SoC,

implemented for a Word Count application and adapted for high-throughput

environments.

Despite having found numerous issues and irregularities along the development of

this work, such as inconsistent Vivado HLS’ logic synthesis result estimations or RTL

behavioural’s descriptions that do not adhere to their C/C++ algorithmic description, none

of the results remain unexpected. We can state that the designed hardware accelerator

core works exactly as we have predicted during the design phase, although much

improvement has been made during the modelling of the solutions.

Regarding the performance estimations of our MapReduce worker, we can reiterate

that FPGA based SoCs make up an optimal solution for high-throughput environments, as

it is the case in the Big Data field, with a minimal cost in power consumption and memory

footprint. However, it is crucial to understand the underlying architecture of the employed

devices to be able to create optimal hardware based solutions, let it be designed through

HLS methodologies or classic RTL design.

| 97

REFERENCES

[1] K. Adam, I. Hammad, M. Adam, I. Fakharaldien, and M. A. Majid, “Big Data Analysis

and Storage,” Proceedings of the 2015 International Conference on Operations

Excellence and Service Engineering, pp. 648–659, 2015 [Online]. Available:

http://umpir.ump.edu.my/7341/

[2] T. J. Barnett, A. Sumits, S. Jain, U. Andra, and T. Khurana, “Cisco Visual Networking

Index (VNI) and VNI Service Adoption - Global Forecast Update, 2015-2020,” 2016

[Online]. Available: https://goo.gl/lYgCtd

[3] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J. Kelner, I. Gódor, G. Szabó, and

T. Westholm, “Deep packet inspection tools and techniques in commodity

platforms: Challenges and trends,” Journal of Network and Computer Applications,

vol. 35, no. 6, pp. 1863–1878, 2012 [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1084804512001622

[4] C. Kachris and G. C. Sirakoulis, “A Reconfigurable MapReduce Accelerator for multi-

core all-programmable SoCs,” 2014 International Symposium on System-on-Chip

(SoC), 2014 [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/6972430/

[5] Y. Shan, J. Yan, Y. Wang, and N. Xu, “FPMR : MapReduce Framework on FPGA A Case

Study of RankBoost Acceleration,” Proceedings of the 18th annual ACM/SIGDA

international symposium on Field programmable gate arrays, pp. 93–102, 2010

[Online]. Available: https://dl.acm.org/citation.cfm?id=1723129

[6] D. Diamantopoulos and C. Kachris, “High-level synthesizable dataflow MapReduce

accelerator for FPGA-coupled data centers,” Proceedings - 2015 International

Conference on Embedded Computer Systems: Architectures, Modeling and

References

98 |

Simulation, SAMOS 2015, no. Samos Xv, pp. 26–33, 2015 [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/7363656/

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Proceedings of 6th Symposium on Operating Systems Design and

Implementation, pp. 137–149, 2004 [Online]. Available:

http://www.engr.scu.edu/~mwang2/projects/MapReduce_cluster_13s.pdf

[8] J. Shuai Che and Jie Li and Sheaffer, J.W. and Skadron, K. and Lach, “Accelerating

Compute-Intensive Applications with GPUs and FPGAs,” Application Specific

Processors, 2008. SASP 2008. Symposium on, pp. 101–107, 2008 [Online]. Available:

ieeexplore.ieee.org/abstract/document/4570793/

[9] A. Dollas, “Big data processing with FPGA supercomputers: Opportunities and

challenges,” Proceedings of IEEE Computer Society Annual Symposium on VLSI,

ISVLSI, pp. 474–479, 2014 [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/6903409/

[10] B. Vega, P. P. Carballo, and P. Hernández-fernández, “TCP / IP Packets Analyzer based

on Configurable Zynq Platform,” pp. 2–5, 2015.

[11] Mike Santarini, “How Xilinx Halved Power Draw in 7 Series FPGAs,” Xilinx Xcell

Journal, no. 76, pp. 9–15, 2011 [Online]. Available:

www.xilinx.com/publications/archives/xcell/Xcell76.pdf

[12] Xilinx Inc., “A Generation Ahead for Smarter Systems: 9 Reasons why the Xilinx Zynq-

7000 all Programmable SoC Platfom is the Smartest Solution,” 2014 [Online].

Available: http://www.xilinx.com/publications/prod_mktg/zynq-7000-generation-

ahead-backgrounder.pdf

[13] Xilinx Inc., “Zynq-7000 All Programmable SoC Overview,” 2016 [Online]. Available:

http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-

Overview.pdf

[14] Daniele Bagni, A. Di Fresco, J. Noguera, and F. M. Vallina, “A Zynq Accelerator for

Floating Point Matrix Multiplication Designed with Vivado HLS,” 2016 [Online].

Available:

References

| 99

http://china.zylinks.com/support/documentation/application_notes/xapp1170-

zynq-hls.pdf

[15] Xilinx, “Zynq-7000 All Programmable SoC ZC706 Evaluation Kit Getting Started

Guide,” 2015 [Online]. Available:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja

&uact=8&ved=0ahUKEwjHjsX-

n4TVAhVBPBoKHUsxBWwQFgg0MAA&url=https%3A%2F%2Fwww.xilinx.com%2Fsu

pport%2Fdocumentation%2Fboards_and_kits%2Fzc706%2F2014_4%2Fug961-

zc706-GSG.pdf&usg=AFQjCNHQ6xy

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating

MapReduce for multi-core and multiprocessor systems,” Proceedings - International

Symposium on High-Performance Computer Architecture, pp. 13–24, 2007 [Online].

Available: http://ieeexplore.ieee.org/abstract/document/4147644/

[17] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++: Modular MapReduce for Shared-

Memory Systems,” MapReduce ’11 Proceedings of the second international

workshop on MapReduce and its applications, pp. 9–16, 2011 [Online]. Available:

http://csl.stanford.edu/~christos/publications/2011.phoenixplus.mapreduce.pdf

[18] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S. M. Goh, and R. Huynh,

“Optimizing the MapReduce framework on Intel Xeon Phi coprocessor,” Proceedings

- 2013 IEEE International Conference on Big Data, Big Data 2013, pp. 125–130, 2013

[Online]. Available: http://ieeexplore.ieee.org/abstract/document/6691563/

[19] J. Cao, H. Cui, H. Shi, and L. Jiao, “Big data: A parallel particle swarm optimization-

back-propagation neural network algorithm based on MapReduce,” PLoS ONE, vol.

11, no. 6, pp. 1–17, 2016 [Online]. Available:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157551

[20] M. Aly, É. P. De Montréal, Y. Shaban, and D. Ph, “Analysis of Massive Industrial Data

using MapReduce Framework for Parallel Processing,” Reliability and Maintainability

Symposium (RAMS), 2017 Annual, 2017 [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/7889681/

References

100 |

[21] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A MapReduce Framework on FPGAs,

OpenCL-based FPGAs,” IEEE Transactions on Parallel and Distributed Systems, vol.

9219, no. c, pp. 1–14, 2016 [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/7425227/

[22] E. Ghasemi and P. Chow, “Accelerating Apache Spark Big Data Analysis with FPGAs,”

2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and

Trusted Computing, Scalable Computing and Communications, Cloud and Big Data

Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 [Online]. Available:

http://ieeexplore.ieee.org/document/7816915/

[23] K. Neshatpour, A. Sasan, and H. Homayoun, “Big data analytics on heterogeneous

accelerator architectures,” 2016 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS). pp. 1–3, 2016 [Online]. Available:

http://ieeexplore.ieee.org/abstract/document/7750986/

[24] N. Elgendy and A. Elragal, “Big Data Analytics: A Literature Review Paper,” Advances

in Data Mining. Applications and Theoretical Aspects, vol. 8557, pp. 214–227, 2014

[Online]. Available: http://link.springer.com/10.1007/978-3-319-08976-8_16

[25] X. Wu, X. Zhu, and S. Member, “Data Mining with Big Data,” IEEE Transactions on

Knowledge and Data Engineering, vol. 26, no. 1, pp. 97–107, 2014 [Online].

Available: http://ieeexplore.ieee.org/abstract/document/6547630/

[26] Xilinx, “Zynq-7000 All Programmable SoC Data Sheet: Overview,” 2017 [Online].

Available: https://goo.gl/Gq4L5E

[27] Xilinx, “ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All Programmable SoC:

User Guide,” 2016 [Online]. Available: https://goo.gl/QjUiQo

[28] Xilinx, “UltraFast High-Level Productivity Design Methodology Guide,” 2017 [Online].

Available: http://www.xilinx.com/support/documentation/sw_manuals/ug1197-

vivado-high-level-productivity.pdf

[29] Xilinx, “UltraFast Design Methodology Guide for the Vivado Design Suite,” 2016

[Online]. Available: https://goo.gl/VcoECN

References

| 101

[30] Xilinx Inc., “Vivado Design Suite User Guide - Design Flows Overview,” Ug892, 2012.

[Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug903-

vivado-using-constraints.pdf

[31] Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis,” 2017 [Online].

Available: https://goo.gl/csGHxv

[32] Xilinx, “Vivado Design Suite User Guide: Implementation,” UG904, 2017 [Online].

Available: https://goo.gl/g8juRh

[33] ARM, “AMBA 4 AXI4-Stream,” 2010 [Online]. Available:

https://silver.arm.com/download/download.tm?pv=1074010

[34] P. P. Carballo, “Aportaciones a la metodología de diseño basada en síntesis de alto

nivel. Aplicaciones al diseño de IPs para procesado de eventos complejos y

codificación de vídeo,” 2016 [Online]. Available:

https://acceda.ulpgc.es/handle/10553/18431

[35] Xilinx Inc., “Xilinx Software Development Kit (SDK),” UG1145, 2016. [Online].

Available: http://www.xilinx.com/tools/sdk.htm

[36] S. J. Matthews, “Using Phoenix++ MapReduce to Introduce Undergraduate Students

to Parallel Computing,” J. Comput. Sci. Coll., vol. 32, no. 6, pp. 165–174, 2017

[Online]. Available: http://dl.acm.org/citation.cfm?id=3069658.3069682

[37] E. Ghasemi, “A Scalable Heterogeneous Dataflow Architecture For Big Data Analytics

Using FPGAs,” University of Toronto, 2015 [Online]. Available:

https://dl.acm.org/citation.cfm?id=2847294

[38] A. Cuzzocrea, M. Cosulschi, and R. de Virgilio, “An Effective and Efficient MapReduce

Algorithm for Computing BFS-Based Traversals of Large-Scale RDF Graphs,”

Algorithms, vol. 9, no. 1, 2016 [Online]. Available: http://www.mdpi.com/1999-

4893/9/1/7

[39] Xilinx, “AXI DMA v7.1,” LogiCORE IP Product Guide, 2016 [Online]. Available:

https://goo.gl/MJQTyw

References

102 |

	Chapter 1. Introduction
	1.1. Background
	1.1.1. Global IP traffic
	1.1.2. An introduction to Big Data and Map-Reduce
	1.1.3. FPGA based flexible platforms
	1.1.4. State of the art

	1.2. Objectives
	1.3. Petitionary
	1.4. Document structure

	Chapter 2. Big Data
	2.1. Definition
	2.2. Characteristics
	2.3. Data mining challenges
	2.4. The MapReduce programming model
	2.4.1. MapReduce dataflow
	2.4.2. Architecture

	2.5. Conclusion

	Chapter 3. Xilinx Zynq All Programmable SoC and High-Level Design Flow
	3.1. Xilinx Zynq-7000 All Programmable SoC
	3.1.1. The ZC706 Evaluation Kit
	3.1.2. Processing System (PS)
	3.1.3. Programmable Logic (PL)
	3.1.4. PS-PL Communication
	3.1.5. Zynq-7000 Memory Map

	3.2. Xilinx HighLevel Design Flow
	3.2.1. Xilinx Vivado and SDK
	3.2.2. Xilinx Vivado HLS

	3.3. Conclusion

	Chapter 4. Proposed solution
	4.1. Initial constraints and considerations
	4.2. MapReduce dataflow architecture
	4.2.1. Split
	4.2.2. Map
	4.2.3. Reduce
	4.2.4. Merge

	4.3. Streaming interfaces considerations
	4.4. IP block depth and preliminary worker footprint
	4.5. Conclusion

	Chapter 5. Hardware platform design
	5.1. Vivado HLS considerations
	5.2. Synthesizable functions library
	5.3. Tuneable parameters file
	5.4. AMBA AXI4 Stream driver
	5.5. IP block modelling
	5.5.1. Split
	5.5.2. Map
	5.5.3. Reduce
	5.5.4. Merge

	5.6. Co-simulation and implementation results
	5.7. Platform modelling
	5.8. Platform Implementation results
	5.8.1. Layout
	5.8.2. Utilization
	5.8.3. Utilization factor
	5.8.4. Timing summary
	5.8.5. Power consumption

	5.9. Conclusion

	Chapter 6. Hardware-software integration
	6.1. Hardware platform instantiation and BSP creation
	6.2. Bare-metal application
	6.2.1. Used libraries and drivers
	6.2.2. System Setup
	6.2.3. Application flow

	6.3. Conclusion

	Chapter 7. Validation phase
	7.1. Validation environment characteristics
	7.2. Latency analysis
	7.2.1. Latency measurements
	7.2.2. Throughput measurements

	7.3. Conclusions and system validation

	Chapter 8. Result analysis, conclusions and future work
	8.1. Overall results and conclusions
	8.2. Improvement suggestions and future developments
	8.2.1. Throughput issues
	8.2.2. Memory limitations
	8.2.3. Parallelism
	8.2.4. Software application improvement
	8.2.5. Architecture modifications

	8.3. Closing statements

	References

