

Design and Implementation of a MapReduce

architecture for Big Data applications using High-

Level Synthesis design flow

Julian Spahr, Pedro P. Carballo and Antonio Núñez

IUMA, Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Spain

{jspahr,carballo,nunez}@iuma.ulpgc.es

Abstract— This paper comprises the design and

implementation of a MapReduce worker for Big Data applications

on a Xilinx Zynq ZC706 using a High-Level synthesis design flow

with C/C++ algorithmic descriptions. We implement a word count

application such that we can estimate the main performance

parameters, such as utilization, throughput and latency. We

conclude the design of a DMA based MR worker with a maximum

throughput of 𝟓𝟎0 Mbps considering data splitting and merging

on the FPGA and 𝟖𝟔𝟎 Mbps without, for maximum key sample of

8 KB.

Keywords: MapReduce; Big Data; Word Count; HPC; HLS;

hardware design; Zynq

I. INTRODUCTION

We use devices and systems that take advantage of data

based infrastructure such as phones, tablets and PC’s that

process vast amounts of information. Examples for large

datasets are streams of social networks, search engines, e-mail

exchange systems, sensor networks, monitorization systems for

public transport and infrastructure, vehicles such as airplanes,

etc… [1], [2]. With such amounts of data, in order to provide a

tolerable Quality of Service (QoS), it is crucial to understand

the underlying challenges that are part of modern networks and

it’s data processing systems and techniques, as global IP traffic

grows larger by the day [3].

The term Big Data is understood as the traffic of

information that flows in immeasurable quantities between the

cited sources. Ultimately, it is collected, structured, organized

and indexed for its further analysis, and as the elements that

compose the datasets have no value on their own, we use

sophisticated algorithms, comprised in Data Mining to find

recurring patterns and conceive useful information [1].

A classic approach to data processing is the MapReduce

(MR) programming model, as developed by Google [4]. The

MR framework, processes vast amounts of data by applying

simple applications using a high amount of processing units

[4]–[7]. The algorithm itself comprises two main phases: a Map

phase where data is translated into useful Key-Value (KV)

pairs, and a Reduce phase where the KV pairs are merged using

a given criteria. Typical applications of a MR model include

Matrix Multiplication, String Matching, Word Count, RGB

Histogram, Machine Learning, Linear Regression, PCA,

Kmeans, etc.… [5]–[7].

A MapReduce model may itself be implemented on

heterogeneous platforms, as a result of requiring low-power,

high-throughput applications in High-Performance Computing

(HPC) environments. In order to address this need, recent

research and developments propose a combination between

General Purpose Processors (GPP) and Field-Programmable

Gate Arrays (FPGA) on a single System on a Chip (SoC) [7]–

[13]. By combining these elements on a single HPC SoC,

solutions acquire the flexibility of a GPP with the high-

performance and low-power response of a FPGA.

This article presents the design and implementation of a

MapReduce for Big Data applications by using a High-Level

Synthesis design flow on a high-end Xilinx All Programmable

(AP) SoC. The employed board is the Zynq ZC706 Evaluation

Board, which integrates a XC7Z045 device, which we deem

enough to integrate the proposed platform. The main

application under which the hardware accelerated core is

designed, verified and validated is a simple Word Count

application.

II. ON DESIGN METHODOLOGY AND THE XILINX ZYNQ AP SOC

It is evident that the designs performance is deeply related

to its design methodology, from modelling, to synthesis and

implementation of the final design. For this reason, we use the

Xilinx Vivado High-Level Design Methodology, which allows

for C/C++ algorithmic descriptions to be converted into a

hardware IP for its later use in a hardware accelerating platform,

a process we call High-Level Synthesis (HLS) [14], [15].

The underlying IP blocks for our design are modelled using

C/C++ and a HLS approach. The chosen environment is the

Vivado HLS tool to perform the Register Transfer Level (RTL)

synthesis and the logic synthesis (implementation) [16]. The

verification of the high-level design and the validation of the

RTL design is made using Cadence’s NCSim, as we consider it

to be a more intuitive and flexible tool than the native Vivado

Simulator environment.

The employed board is the Xilinx Zynq ZC706 evaluation

board, which integrates a Kintex-7 derived FPGA, the

XC7Z045-FFG900I device, containing 218,600 Look Up

Tables (LUT’s), 437,200 Flip Flops (FF’s), 1,090 18 KB Block

Ram’s (BRAM’s) (19.2 Mb) and 900 Digital Signal Processing

(DSP) slices. The Processing System (PS) works at a maximum

frequency of 800 MHz, while the Programmable Logic (PL)

works up to a maximum of 250 MHz.

By using Xilinx provided products and design

environments, we shorten valuable design and delivery time of

the hardware platform. It also enables the designer to easily

create hardware accelerating cores by using the Vivado IP

integrator, create a bare-metal application and verify its

behavior by using the Xilinx SDK environment.

III. MAPREDUCE ACCELERATOR CORE

The MR hardware accelerator core is proposed as a basic

MR worker, which integrates four main data processing phases:

Split, Map, Reduce and Merge. By developing such a

framework as a hard-IP, we create a framework whose

application can be substituted with any other desired

functionality. For this work, we use a simple Word Count

application.

In terms of architecture, this design uses a Direct Memory

Access (DMA) that connects the PS side’s memory directly to

the PL’s custom logic, passing files from source to destination

and recovering the result through AMBA AXI4 Stream

interfaces (AXIS). For our purposes, we defined a MR worker

by using 1 Split IP, 8 Map-Reduce pairs and 1 Merge IP. The

AXIS interfaces have a width of 1 byte, since the underlying

IP’s do byte-per-byte processing and we reduce therefore

latency derived from data type conversions. The proposed

hardware accelerator core can be found in Figure I, using FIFOs

to separate the individual IP blocks and create a dataflow

friendly solution.

A. Split

The splitters main task is to divide the input stream into

multiple streams that are sent to the available Map-Reduce

lines, without destroying valuable data in the process.

B. Map

The Map IP concerns the core of the application. For our

application, which is Word Count, the Map IP reads the input

stream and composes Key-Value pairs, being the Key the read

English word and the Value it’s repetition factor. A common

Map function returns KV pairs with their values as 1, since we

haven’t starting merging data.

C. Reduce

The Reduce function takes a KV input, compares the Key

to the ones in memory, and merges it with the existing key in

the registry, by increasing its value by 1. This IP requires the

stream to be stored in memory, an approach that throttles

greatly the throughput of the whole system. To overcome much

of the introduced latency, we opted for introducing an ‘index

remembering’ solution, that does not require reading the entire

memory, but only ‘legal indexes’ that are allowed for any given

KV pair.

For our purposes, we modelled the Reduce IP block such

that it registers the second character of any given Key (e.g. for

Charlie, the uppercase letter ‘H’) and the index in which the KV

is appended or merged. If a new KV pair enters the Reduce IP,

only the indexes that share that second alphabetic character is

iterated. 1 letter keys are treated as ‘Z’ character cases, as this

case of keys is underused.

Figure I. Hardware accelerator architecture. The DMA is

managed by the systems PS’ and sends and recovers data from the

hardware accelerator.

Once the entirety of the Key-Value pairs has been read, the

memory is emptied by sending its content to the next IP block.

D. Merge

The merging function does not adhere to any application, as

its sole task is combining the incoming AXI streams into one

output stream that is sent back to memory through the DMA.

While the Split IP must swap interfaces after a certain

number of bytes, to keep the Map stage working and not idle,

the Merge IP is connected to the Reduce output and can

therefore send data once it reads the first byte out of the FIFO.

This means, since the Reduce stage stores the entirety of the

data in memory, once valuable data is sent, the Merge IP is

allowed to copy the entirety of the data to its output stream until

finished, as no IP block remains idle while doing so.

IV. MODELLING CONSIDERATIONS

A. Key-Value stream protocol

Using AXIS solutions allows for easy IP block integration.

However, it is crucial to develop a Key-Value based stream

protocol such that the MR worker can handle the data. By a

Kev-Value stream protocol, we understand a mean of

transmitting data such that the IP blocks can identify the keys

and values within it.

The Map IP block is the first that requires a KV specific

protocol, as it translates character strings into KV pairs. For this

task, we considered a KV streaming protocol. When a new key

is found, it is emitted to the Reduce stage, followed by a

horizontal TAB character (ASCII code 9) to mark the end of a

key. Once the entire stream is processed, the Reduce IP emits

the output data by sending a key followed by a TAB character

and two bytes representing its value, as shown in Figure II.

For our streaming protocol, we conclude that for every TAB

character on the stream reading end of the IP, we write a TAB

character and two bytes of data. This results in a maximum

stream size of 2 times the size of the input, which for 1 KB input

depth results in 2 KB output.

Figure II. Key-Value streaming protocol.

B. AMBA AXI4 Stream driver

We had multiple experiences using AXI Stream interfaces

through C/C++ based HLS approaches. What stands out is the

accessibility regarding the AXI Stream fields, which enables

easy AXIS handling but carries inconsistencies within the

protocol, as in other works we experienced IP block stalling due

to bad stream handling. For this reason, we developed a simple

C/C++ AXIS driver that handles the signals accordingly, as

defined by [17]. This includes a correct handling of the

TDATA, TLAST and TKEEP fields, such that standard Xilinx

IP do not stall or loop indefinitely due to bad AXIS treatment

from preceding IP’s.

C. Platform architecture characteristcs

The designed MapReduce worker uses a 1 byte width AXIS

connecting all the designed IP blocks. The accelerator has a

maximum input data size of 8 KB. Although it is true that

ideally the hardware accelerator can accept an indefinite

amount of data as long as it is being read out of the FIFO blocks,

the Reduce IP requires memory storage to happen, which

therefore reduces the maximum capacity of the MR worker. We

chose the Map-Reduce pairs to allow for a maximum of 1 KB,

resulting in 8 KB of input data.

We decided to use a DMA based architecture, which means

that the input data must be declared previously in memory and

passed on to the accelerating core using the PS. We use the

same DMA core to receive the resulting data. Both the

transmission (TX) and reception (RX) streams are handled

using interrupts in favor of polling, reducing therefore the

latency derived from data transfer and handling.

D. IP block modelling

1) Split

Since we’re using a Word Count application, the Split IP

segments the data into 8 out-stream’s. The splitting criteria is

having copied a minimum of 25 bytes to the output, as well as

having finished reading a complete English word before

swapping to the next output interface. By doing so, the

architecture permits the next phase to start working and

reducing idle periods.

2) Map

The Map stage transforms the input data into valuable keys.

This IP copies only the alphabetic characters from the input

stream to the output, separating them with a TAB character.

3) Reduce

The Reduce IP concerns the merging of Key-Value pairs,

based on their Key. An incoming Key is either appended to the

KV list that is stored in memory, or merged with its existing

Key by increasing its value by 1. To reduce latency derived

from iterating the KV registry, the Reduce IP is only allowed to

read the indexes that share a common characteristic with the

current incoming Key, which for our case is the second letter.

Once all the keys of the incoming stream are handled, the

Reduce IP emits the entirety of its memory by using the defined

KV protocol.

4) Merge

The Merge IP block reads the FIFOs located after the Reduce

stage and merges the multiple streams into one output stream.

If the FIFO contains valuable data, the Merge IP will read the

entirety of the stream until the last element is found. While the

Split IP concerns itself with swapping interfaces to establish a

dataflow friendly behavioral, this stage does not need to, since

finding valuable data in a FIFO means that the entirety of the

Reduce result for that given line is available.

5) Platform capacity

As already mentioned, we decided to use up to 8 Map-

Reduce pairs or lines after the Split IP to divide evenly the input

stream and process the data in concurrently. Each line has a

capacity of 1 KB, as limited by the memory of the Reduce IP

block. Since we’re using the KV protocol, we’re outputting 2

KB for every 1 KB of data, and therefore the platform has an

input capacity of 8 KB, outputting a maximum of 16 KB.

6) Implementation results

The complete utilization report is shown in TABLE I.

TABLE I. Hardware platform utilization (%)

IP Slices LUT LUTRAM FF BRAM

Platform 31.20 20.84 30.63 6.88 32.05

Split 0.84 0.59 0.00 0.29 0.00

Map 0.78 0.47 0.00 0.26 0.00

Reduce 25.88 17.34 30.36 4.75 19.08

Merge 0.26 0.15 0.00 0.08 0.00

We conclude that the limiting factor for using a MapReduce

worker is the Block RAM (BRAM) usage of the Reduce IP,

which totals to 32.05 %, with the LUTRAM coming second

with a 30.63 % utilization factor. We synthesize the overall

utilization results, as well as the individual utilization for the

multiple MR stages in Figure III.

We are also interested in calculating the Utilization Factor

(UF) of our design, since, as explained in [18], the Zynq ZC706

holds a maximum of 4 LUT’s and 8 FF’s per slice. By

calculating that factor, we are able to estimate the efficiency of

the slice usage that is inferred by the HLS tool. The associated

formulas are shown in (1) and (2).

UFLUT =
N. of LUT's

N. of Slices

(1)

UFLUT =
N. of FF's

N. of Slices

(2)

The UF calculations are synthesized in TABLE II, where

we compare our results with Carballo’s work done in [19].

Our utilization factor is on par with the overall UFLUT for

similar solutions on Zynq devices, as well as a Xilinx Virtex-5.

None of the presented designs have a high UFFF, something we

can attribute to the HLS design flow and synthesis process, as

well as our own design flow which does require more LUT

usage over the overall FF usage.

Figure III. Hardware platform utilization report.

 TABLE II. SLICES UTILIZATION FACTIOR COMPARISON

Design Architecture
HLS

Tool
FPGA Device

Utilization

Factor

UFLUT UFFF

0 Platform + IP
Vivado

HLS

Xilinx Zynq

7z020
2.91 2.90

1 IP CtoS
Xilinx Zynq
7z045

3.32 1.64

2 Platform + IP
Vivado

HLS

Xilinx Zynq

7z045
2.29 3.05

3 IP
Vivado

HLS

Xilinx Zynq

7z045
2.12 2.79

4 Platform + IP CtoS
Xilinx Virtex-5
FX 130t

2.85 2.09

MR

Worker
Platform + IP

Vivado

HLS

Xilinx Zynq

7z045
2.67 1.77

V. VALIDATION PHASE

To validate our design, we have developed a simple

application that sends previously in-memory allocated data

through the DMA and to the accelerator core. The result is

collected by the same DMA and send back to the PS, where the

KV protocol is unrolled. The given data can be either presented

or stored back into memory.

A. Measurements setup

Our main objective in the validation phase is to validate the

proper functionality of the hardware platform as a MR worker

and to produce latency and throughput estimates. To do so, we

used 5 samples (or keys) with a maximum size of 8 KB. Latency

itself is measured using two methods:

 The worker latency from the Split to the Merge block.

This method corresponds to a DMA per interruptions

setup (DPIS).

 The line latency or delay associated to the Map-Reduce

stage. We call this setup Reduce Per Polling (RPP) as

we poll the Reduce stage to find out whether the MR

worker has finished the task of processing.

B. Latency and throughput measurements

The obtained latencies and throughputs are shown in Figure

IV and Figure V.

Figure IV. Mean system latency comparison.

Figure V. System throughput.

We estimated the platforms parameters by calculating the

mean over all the results for either of the measuring methods.

The throughput measurements have a logarithmic behaviour,

since the MR worker consumes a minimal latency, regardless

of the input key size. We call this latency the dnode delay, as it

is the minimal node delay. This value is of 8 μs, 3.2 μs of which

belong to the RPP latency.

For a maximum sample size of 8 KB, the worker delay rises

to 127 μs while the Map-Reduce pair lines have a 75 μs delay.

We achieve a maximum throughput of ~860 Mbps for the RPP

setup, and ~500 Mbps.

For our architecture, the test keys are previously allocated

into memory, although it is possible to provide them to the

ZC706 board through a Secure Digital (SD) card and

automatize the working process.

VI. CONCLUSION

In this document, we present the design and implementation

of a MapReduce worker platform that responds to a Big Data

application on a Xilinx Zynq AP SoC. The main objective of

this work is the design of the needed acceleration kernels

required in hardware and in software, to implement the final

MR solution.

The advantages of implementing the MapReduce worker on

FPGA produces a high-throughput solution that uses the

hardware acceleration kernels to increase the overall system’s

performance. In our case, we produce a MR worker that

integrates a word count solution with a maximum throughput of

860 Mbps considering hardware data splitting and merging,

and 500 Mbps in the Map-Reduce phase.

0

5

10

15

20

25

30

35

Platform Split Map Reduce Merge
LUT (218,600) 20,84 0,59 0,47 17,34 0,15

LUTRAM (70,400) 30,63 0 0 30,36 0

FF (437.2K) 6,88 0,29 0,26 4,75 0,08

BRAM (454) 32,05 0 0 19,08 0

P
L

LO
G

IC
 U

TI
LI

ZA
TI

O
N

 (%
)

UTILIZATION REPORT (%)

ACKNOWLEDGEMENTS

This work has been supported by the University of Las
Palmas de Gran Canaria and the Institute for Applied
Microelectronics (IUMA).

REFERENCES

[1] K. Adam, I. Hammad, M. Adam, I. Fakharaldien, and M.

A. Majid, “Big Data Analysis and Storage,” Proceedings

of the 2015 International Conference on Operations

Excellence and Service Engineering, pp. 648–659, 2015.

[2] T. J. Barnett, A. Sumits, S. Jain, U. Andra, and T.

Khurana, “Cisco Visual Networking Index (VNI) and VNI

Service Adoption - Global Forecast Update, 2015-2020,”

2016.

[3] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J.

Kelner, I. Gódor, G. Szabó, and T. Westholm, “Deep

packet inspection tools and techniques in commodity

platforms: Challenges and trends,” Journal of Network

and Computer Applications, vol. 35, no. 6, pp. 1863–

1878, 2012.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Proceedings of 6th

Symposium on Operating Systems Design and

Implementation, pp. 137–149, 2004.

[5] C. Kachris and G. C. Sirakoulis, “A Reconfigurable

MapReduce Accelerator for multi-core all-programmable

SoCs,” 2014 International Symposium on System-on-Chip

(SoC), 2014.

[6] Y. Shan, J. Yan, Y. Wang, and N. Xu, “FPMR :

MapReduce Framework on FPGA A Case Study of

RankBoost Acceleration,” Proceedings of the 18th annual

ACM/SIGDA international symposium on Field

programmable gate arrays, pp. 93–102, 2010.

[7] D. Diamantopoulos and C. Kachris, “High-level

synthesizable dataflow MapReduce accelerator for

FPGA-coupled data centers,” Proceedings - 2015

International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation,

SAMOS 2015, no. Samos Xv, pp. 26–33, 2015.

[8] M. Aly, É. P. De Montréal, Y. Shaban, and D. Ph,

“Analysis of Massive Industrial Data using MapReduce

Framework for Parallel Processing,” Reliability and

Maintainability Symposium (RAMS), 2017 Annual, 2017.

[9] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A

MapReduce Framework on FPGAs, OpenCL-based

FPGAs,” IEEE Transactions on Parallel and Distributed

Systems, vol. 9219, no. c, pp. 1–14, 2016.

[10] E. Ghasemi and P. Chow, “Accelerating Apache Spark

Big Data Analysis with FPGAs,” 2016 Intl IEEE

Conferences on Ubiquitous Intelligence Computing,

Advanced and Trusted Computing, Scalable Computing

and Communications, Cloud and Big Data Computing,

Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016.

[11] A. Dollas, “Big data processing with FPGA

supercomputers: Opportunities and challenges,”

Proceedings of IEEE Computer Society Annual

Symposium on VLSI, ISVLSI, pp. 474–479, 2014.

[12] Y. Choi and H. K. So, “Map-Reduce Processing of K-

means Algorithm with FPGA-accelerated Computer

Cluster,” pp. 9–16, 2014.

[13] A. Cuzzocrea, M. Cosulschi, and R. de Virgilio, “An

Effective and Efficient MapReduce Algorithm for

Computing BFS-Based Traversals of Large-Scale RDF

Graphs,” Algorithms, vol. 9, no. 1, 2016.

[14] Xilinx, “UltraFast High-Level Productivity Design

Methodology Guide,” 2017.

[15] Xilinx, “Vivado Design Suite User Guide: Design Flows

Overview,” 2017.

[16] Xilinx, “Vivado Design Suite User Guide: High-Level

Synthesis,” 2017.

[17] ARM, “AMBA 4 AXI4-Stream,” 2010.

[18] Xilinx, “Zynq-7000 All Programmable SoC Data Sheet:

Overview,” 2017.

[19] P. P. Carballo, “Aportaciones a la metodología de diseño

basada en síntesis de alto nivel. Aplicaciones al diseño de

IPs para procesado de eventos complejos y codificación

de vídeo,” 2016.

	I. Introduction
	II. On design methodology and the Xilinx Zynq AP Soc
	III. MapReduce accelerator core
	A. Split
	B. Map
	C. Reduce
	D. Merge

	IV. modelling considerations
	A. Key-Value stream protocol
	B. AMBA AXI4 Stream driver
	C. Platform architecture characteristcs
	D. IP block modelling
	1) Split
	2) Map
	3) Reduce
	4) Merge
	5) Platform capacity
	6) Implementation results

	V. Validation phase
	A. Measurements setup
	B. Latency and throughput measurements

	VI. Conclusion
	Acknowledgements
	References

